These instructions must be read in conjunction with the separate instructions for the Fire Section. Please leave these instructions adjacent to the gas meter.
Bermuda 25/1
Cat. 1 N—Boiler Unit

INTRODUCTION
This unit is the boiler section of a combined central heating boiler and gas fire designed for installation in a living room. It is fitted in the normal builders opening at the base of the chimney and can be installed into most tiled surrounds, proprietary surrounds or as a panel fire. The unit is for use with Natural Gas only.

The boiler unit output is ranged from 4.4kW (15,000 Btu/h) to 7.3kW (25,000 Btu/h). This appliance is supplied pre set at its maximum rate.

This boiler is designed for use with the Bermuda Fires C3 GC No. 37 007 10, C3W GC No. 37 077 20, GF Super GC No. 37 077 15, LFE 3 Super GC No 37 077 16.

SITE REQUIREMENTS

Builders Opening (Fig. 1)
This opening is used to accommodate the boiler.

The minimum dimensions required are 343mm (13½in) deep × 584mm (23in) wide × 584mm (23in) high. Such openings should be soundly constructed of brickwork, pre-cast concrete or material such as asbestos free Marinite. Care must be taken to mount the pre-cast units or boxes at a height appropriate to the type of installation e.g. wall or hearth fix, and the dimensional requirements must be maintained.

The Surround and Fireplace Opening (Fig. 2)
If a surround is to be used it must have a vertical flat area centrally placed about the fireplace opening. The areas required for the different gas fires are shown in table 1 below.

The Hearth
The floor of the builders opening must be sound in accordance with current Building Regulations and ON THE SAME LEVEL AS THE FRONT HEARTH.

No Surround
The unit can be fitted as a hearth fire without a surround but a non-combustible hearth is always necessary.

Wall Fixing
The unit can be wall mounted using a fire support bracket supplied with each fire. The base of the builders opening on which the boiler rests should be 100mm (4in) to 125mm (5in) above the floor level. If a surround is being removed the opening should be made to the maximum dimensions indicated in Table 2.

Flue
A variety of types of flue may be used for the unit, but they all must be equivalent to a straight flue of 3m (10ft) height from hearth level. The affects of bends is covered in BS 5440 Part 1.

<table>
<thead>
<tr>
<th>GAS FIRE</th>
<th>VERTICAL FLAT AREA</th>
<th>MINIMUM DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td>660mm (26in)</td>
<td>860mm (34in)</td>
</tr>
<tr>
<td>C3W</td>
<td>675mm (26½in)</td>
<td>860mm (34in)</td>
</tr>
<tr>
<td>GF SUPER</td>
<td>765mm (30½in)</td>
<td>765mm (30½in)</td>
</tr>
<tr>
<td>LFE 3 SUPER</td>
<td>789mm (31in)</td>
<td>998mm (39½in)</td>
</tr>
</tbody>
</table>

(a) 9in × 9in brick chimneys—These must be of sound construction and lined with a 125mm (5in) flue liner terminating with an approved terminal. Previously used chimneys should be swept and dry before a flue liner is fitted. A seal around the space between the liner and the chimney is required at the top and bottom of the chimney.

(b) Pre-cast flue blocks—These must conform to BS 5440 Part 1.

(c) Acid resistant liners—if the chimney is already fitted with acid resistant liners suitable for gas appliances then a further liner is not necessary but an approved terminal is required. A short length of 125mm (5in) diameter flue pipe to BS 567 is required to connect the boiler to the chimney. It is necessary to seal the space between the short piece of the flue pipe and the chimney.

(d) Light quality cement flue pipes and proprietary insulated flue pipes—Flues of this type can be used taking care to design and install in accordance with good practice and the flue manufacturers’ recommendations.

(e) Terminals—a suitable approved type of terminal is required. If the flue exceeds 4.3m (14ft) in height the restrictor ring which is supplied with the unit will generally be required. (Fig. 4)

Gas Supply The connection of the unit is Rc½ (½in BSPT) internal, located on the right hand side of the appliance. For the full information on gas supply pipes, pipe sizes etc. reference should be made to BS 6891: 1988. Generally it is advisable to run a 22mm (¾in) supply pipe from the meter to the builders opening with the last 1m (3ft) in 15mm (½in) pipe.

Electrical Supply—All external wiring should be correctly earthed and polarised and in accordance with current I.E.E. wiring regulations. For wiring instructions see “Electrical Connection”.

Water Circulation Systems — The unit is suitable for use with fully pumped systems (small bore and micro bore with open vents) and gravity domestic hot water with pumped central heating systems.

The unit is not suitable for use with sealed systems. When the unit is to be installed to an existing or new gravity domestic hot water and pumped central heating system the following considerations should be given to the design of the gravity domestic hot water flow and return pipes.

(i) The minimum circulating head should not be less than 1m (3ft) with a maximum horizontal run of 3m (10ft) when using 28mm (1in) pipes. Smaller pipe sizes and longer horizontal runs are acceptable with suitably increased circulating heads.

(ii) The system must be designed to prevent reverse circulation.

(iii) Pipes should be laid to maximum fall avoiding points of possible air lock.

The following conditions should be observed on all types of system:

(i) THE WATER SPREADER ADAPTER MUST BE FITTED TO THE BOILER RETURN CONNECTION ON ALL SYSTEMS.

(ii) The static head must exceed 30m (100ft) of water

(iii) The boiler must only be used with an indirect cylinder.

<table>
<thead>
<tr>
<th>SURROUND OPENING ALL FIRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEIGHT</td>
</tr>
<tr>
<td>560 mm (22in)</td>
</tr>
</tbody>
</table>

| MINIMUM DIMENSION |
| MAXIMUM DIMENSION |
| WIDTH |
| 406 mm (16in) |
| 584 mm (23in) |

<table>
<thead>
<tr>
<th>TABLE 2</th>
</tr>
</thead>
</table>

(iv) Drain points should be fitted to the lowest points in the system.

(v) All electrical wiring, gas and water pipes must be installed in a way which will not restrict the servicing of the boiler.

(vi) Arrangements must be made so that gravity circulation does not take place in the heating circuit when the pump is not in use.
Boiler Connections — The boiler is supplied with flow and return connections on the left hand side. If the connections are required on the right hand side the boiler casting can be reversed within the combustion chamber. (See Boiler Connections on page 4).

Ventilation
Ventilation via a permanent air vent of 41cm² (6in²) to the outside atmosphere is required. This vent may be directly into the room which has a similarly sized permanent air vent to the room containing the appliance. The vent must NOT be placed in the builders opening.

<table>
<thead>
<tr>
<th>BOILER DIMENSIONS</th>
<th>From Back of Boiler</th>
<th>From Hearth Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>328 mm (12½in)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>82 mm (3½in)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>401 mm (16in)</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>504 mm (20in)</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>529 mm (20¼in)</td>
</tr>
<tr>
<td>F</td>
<td>343 mm (13¼in)</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>396 mm (15½in)</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3

<table>
<thead>
<tr>
<th>FLOW AND RETURN TAPINGS</th>
<th>From Back of Boiler — When on</th>
<th>From Hearth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left Hand</td>
<td>Right Hand</td>
</tr>
<tr>
<td>H Rear Flow</td>
<td>71 mm (2½in)</td>
<td>99 mm (3½in)</td>
</tr>
<tr>
<td>I From Flow</td>
<td>158 mm (6¼in)</td>
<td>186 mm (7¼in)</td>
</tr>
<tr>
<td>J Return</td>
<td>100 mm (3¾in)</td>
<td>158 mm (6¼in)</td>
</tr>
</tbody>
</table>

TABLE 4

Boiler details

Height	533 mm (21in)
Width	296 mm (11¾in) (including service tap 318 mm (12½in))
Weight	38 kg (84lbs)
Water content	2-2 litres (0-48 gals)
Boiler tappings	3 x ½in (½in BSPT internal)
Gas connection	R1½ (½in BSPT internal)
Electrical supply	240 volts √50 Hz — 3 amp fuse
Hydraulic Resistance	13 mbar (5in w.g.) at 900 l/h (3-3 g.p.m.)

IMPORTANT:
If a false chimney breast is intended to house the boiler, a simulated builders opening, within the breast, must be provided. See BUILDERS OPENINGS. The builders opening must not communicate with voids, pipe ducts or spaces other than the room in which the appliance is situated.

When correctly installed the centre line of the boiler flue socket will be 258 mm-305 mm from the surround on finish wall face.

Fig. 1. Builders Opening

Fig. 2. Fireplace Opening
The boiler must be installed by a competent installer and satisfy the relevant requirements of the Gas Safety Regulations, Building Regulations, Local Authorities, Local Water Authorities and the Gas Region. References should be made to the current British Standard Codes of Practice BS 6891, BS 5440 Parts 1 & 2, BS 6798, BS 5871, BS 5546, BS 5449 Part 1.

Siting the unit
The complete unit (boiler and fire) can be used in different circumstances:
(a) With a tiled surround and hearth.
(b) Without a tiled surround but with a hearth.
(c) As a wall mounted fire.
(d) In a proprietary surround constructed of suitable material.
The general method of installation is the same in all cases, but slight changes of procedure must be made to suit the particular circumstances.

Boiler Connections (Fig. 3)
If the boiler connections are required on the right hand side proceed as follows:
1. Remove the transit packing but do not lift the boiler off the transit base.
2. Remove the thermostat capillary from behind the clip on the front panel and withdraw the thermostat phial.
3. Remove the front panel (Fig. 6). Transfer the thermostat pocket blanking disc to the right hand hole.
4. Slide out the baffles from between and above the heat exchanger castings and slide out the blanking plate (Fig. 3).
5. Remove the two right angled securing clips (Fig. 3).
6. Remove the casting securing bolt at the left hand side (Fig. 6).
7. Lift out the heat exchanger. Retrieve the three sealing rings and boiler clamping plate.
8. Reverse the boiler casting and re-assemble ensuring that:
(a) The three sealing rings are correctly positioned after refitting the casting.
(b) The blanking plate is fitted at the left hand side of the casting.
(c) The heat exchanger baffles are fitted between and above the casting.
(d) The casting is secured by the clamping plate and bolt.
(e) Route the thermostat capillary under the heat shield and up the left hand side (Fig. 7). The thermostat phial now fits in the pocket at the LEFT HAND SIDE IN THE LOWER SECTION.
(f) The two right angled securing clips are replaced.

Fitting the boiler (Fig. 4)
1. Remove the fireback, back boiler rubble, etc., and expose the builders opening.
2. Line the flue. Terminate the lower end of the liner at 508 mm (20in) above the finished hearth level (Fig. 1).
3. Build up a level solid hearth within the builders opening flush with the front of the hearth. Scribe a centre line on the hearth from the front finished face to a point at least 150 mm (6in) forward of the face.
4. Lift the boiler off the transit base. Place the boiler in the builders opening, and remove the heat shield over the controls. Check that the front finished face lies between the two notches on the sides of the boiler base (Fig. 4) and that the arrowhead cut out at the front is on the centre line of the heat. With the boiler now in position drill directly through the fixing holes and secure with the plugs and screws provided (see page 15).
5. Attach the liner to the socket with the three screws provided and seal the joint.
6. Connect the gas supply to the service tap. It is preferable to have the gas supply coming from the right of the builders opening. If however it does come from the left hand side and must pass in front of the boiler then for ease of servicing it is imperative that the pipe passes under the burner feed pipe and the pilot feed pipe. REPLACE THE HEAT SHIELD, UNLESS AN L.F.E. SUPER, GF SUPER, VP OR SP IS TO BE FITTED. IF SO FIT THE NEW HEAT SHIELD SUPPLIED WITH THE FIRE USING THE SCREWS PREVIOUSLY REMOVED.
7a Gravity domestic hot water and pumped central heating The flow and return connections to the boiler MUST be made as follows: (Fig. 5)
(i) The water spreader adaptor and the injector tee must be fitted in the lowest of the three tappings with the branch facing straight down. It is acceptable for the branch to be angled at 45° either side of this position.
(ii) Connect the pumped heating return to the compression fitting end of the injector tee.
(iii) Connect the gravity hot water return to the branch of the injector tee.
(iv) Connect the pumped heating flow to the top front tapping for left hand connections or the top rear tapping for right hand connections.
(v) Connect the gravity hot water flow to the remaining top tapping.
7b Fully Pumped Systems The flow and return connections to the boiler to be as follows (Fig. 6).
(i) Fit the adaptor with the plastic water spreader in the bottom return tapping on the boiler. Do not use excessive jointing compound which may obstruct the holes in the spreader.
(ii) Use either of the top flow tappings and plug the unrequired flow connection with a 1” BSP plug.
(iii) Connect the pumped flow to the top front tapping for left hand connections or the top rear tapping for right hand connections.
(iv) Plug the remaining top tapping using a 1 in BSP plug.
8. Connect the electrical supply – see ‘Electrical Connections’.
9. Any holes within the builders’ opening e.g. to accommodate pipework etc must be made good.
10. Complete the installation as described under ‘Commissioning the Boiler’.
Fig. 3. Boiler Connections

Fig. 4. Boiler in Builders Opening

Fig. 5. Gravity D.H.W.

Fig. 6. Fully Pumped System

Fig. 7. Boiler Controls

Fig. 8. Gas Service Tap
Electrical Connections
The main supply required is 240V/50 Hz fused at 3 amps. A double pole switch having a contact separation of at least 3mm or an unswitched socket outlet should be provided. All electrical wiring should be correctly earthed and polarised and in accordance with I.E.E. Wiring Regulations.

Illustrated Wiring Diagram

Functional Flow diagram

Electrical supply to the controls
The recommended cable for the connection to the boiler terminal trip is 0.75mm² – 24/0.20 PVC heat resistant grade (70°C). To BS 6500 Table 16. It is preferable to have the electrical supply cable coming from the right hand side of the builders opening. If however it must come from the left hand side it must be fitted to the alternative clip provided (Fig. 7). It is important to route any input cable to avoid contact with the combustion box sides.

Commissioning the Boiler
1. The water system should be thoroughly flushed out with cold water without the pump in position.
2. With the pump fitted, fill the system with water, vent the radiators and check there are no leaks.
3. Turn the gas service tap clockwise ½ turn from the off position, this will supply gas to the boiler only. (Fig. 8).
4. Purge the air from the gas supply pipe at the gas service tap. Test for gas soundness.
5. Ensure that all external controls e.g. room thermostat timer etc., are calling for heat.
6. Turn the boiler thermostat to the “OFF” position (Fig. 7).
7. Turn on the mains electrical supply.
8. Slacken the test point sealing screw and connect a pressure gauge (Fig. 7).
9. Hold in the grey button on the gas control valve (Fig. 7).
10. Press the Piezo unit button and release. Repeat until the pilot lights. Hold in grey button for a further 15 seconds and then release. The pilot should then stay alight. If the pilot fails to remain alight twist the grey button clockwise and release wait three minutes and start again from 9. The pilot fire should be without a yellow tip and approximately 25mm (1in) long. Adjust if necessary (Fig. 7).
11. Operate the burner by turning the boiler thermostat knob to the high setting. CHECK THE OPERATION OF THE FLAME FAILURE DEVICE by turning the grey ON/OFF button clockwise. The burner and the pilot should go out.
12. Turn the boiler thermostat to the OFF position. Wait three minutes and re-light the pilot.
13. Operate the burner by turning the boiler thermostat knob to the high setting.
14. Remove the cover screw and adjust the appliance governor (Fig. 7) to the setting pressure corresponding to the required input. Check the pressure after ten minutes burning time and adjust if necessary. Adjust the input indicator arrow on the data label if necessary.
15. The system should be flushed again, when hot, refilled and check that there are no leaks.
17. Turn the boiler thermostat to the required setting.
18. Turn off the electrical supply.
19. Remove pressure gauge and tighten the test point sealing screw. Ensure a gas tight seal is made.
20. Fit the gas fire section as described in the Fire Section installation instructions.

RATINGS & SETTING PRESSURES

<table>
<thead>
<tr>
<th>Heat Input</th>
<th>10.2kW (34,700 Btu/h)</th>
<th>6.2kW (21,100 Btu/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Output</td>
<td>7.3kW (25,000 Btu/h)</td>
<td>4.4kW (15,000 Btu/h)</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>16.0mbar (6.4 in w.g.)</td>
<td>5.8mbar (2.3 in w.g.)</td>
</tr>
</tbody>
</table>
1. Pipe Sizing

(a) The sizes of flow and return pipes from the boiler should be determined by normal methods according to the requirements of the system. Generally an 11°C (20°F) drop across the system.

(b) The open vent pipe must be a minimum of 22 mm and must rise continuously to above the feed & expansion tank. The flow pipe from the boiler may form part of the open vent. No part of the open vent should contain a valve.

(c) In a fully pumped system the cold feed pipe (15 mm) may be connected to the flow pipe, 6 inches away from the vent pipe (close coupled), but there must always be a cold water path to the boilers return connection.

(d) The system should be designed so that gravity circulation does not take place in the heating system when the pump is not running.

Fuel Economy

When designing a control system for a central heating installation, better fuel economy is achieved by exercising control of the boiler from a room thermostat or cylinder thermostat as appropriate. Allowing the boiler to cycle under control of the boiler thermostat does not produce the best results. The examples given below and on the following pages indicate alternatives to meet different circumstances.

Fully Pumped Systems (Fig. 9 & 10)

One Zone Valve (Fig. 11)
Zone valve with auxiliary switch fitted at point V. A cylinder thermostat and a room thermostat are used to control both the pump and the boiler. The room thermostat also controls the zone valve to stop water circulation in the heating system.

Two Zone Valves (Fig. 13)
Zone valves are fitted at points V and U to stop water circulation to the heating system and the cylinder. The valves are controlled by a room thermostat and a cylinder thermostat respectively, each of which also control the boiler and the pump.

Diverter Valve (Fig. 14)
A diverter valve is inserted at point W to direct water circulation to either the cylinder or the heating system. The valve along with the pump and the boiler is controlled by a cylinder thermostat and a room thermostat.

Gravity D.H.W. Systems

Sundial Control (Fig. 12)
Both the boiler and the pump are controlled by a cylinder thermostat and a room thermostat. The room thermostat overrides the cylinder thermostat when heating is called for.
Electrical Control System
Baxi Bermuda 25/1

Fig. 11. One Zone Valve – Fully Pumped System
Fig. 12. Sundial Control – Gravity Domestic Hot Water System
Fig. 13. Two Zone Valve – Fully Pumped System
Fig. 14. Diverter Valve – Fully Pumped System

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.
Servicing the Unit
Baxi Bermuda 25/1 — Boiler
Exploded Diagram

Boiler and Combustion Chamber

Burner and Controls

Lists of parts are available on request.
Short Parts List illustrated on back page.
Servicing the Unit

Fire — See separate instructions provided for the Fire Section.

Boiler

1. **Isolate the electrical supply.**
2. **Remove the fire as described in the separate instructions supplied for the Fire Section.**
3. **After noting its original setting turn the boiler thermostat to “OFF”**.
4. **Turn off the gas supply at the service tap and disconnect the union.**
5. **Remove the screw and washer securing the controls connection plug, unclip the wiring, and disconnect the plug and the inlet socket.**
6. **Unclip the capillary and remove the thermostat phial from the boiler.**
7. **Remove the front panel.**
8. **Remove the burner and controls complete. (three screws) (Fig. 16) and remove the clip securing the lint arrester to the base of the appliance (Fig. 17).**
9. **Slide out the heat exchanger baffles (Fig. 17).**
10. **Remove the insulation as follows:**
 (a) **Remove the two side insulation panels by removing the securing clamps and sliding downwards from behind the lugs on the heat exchanger support bracket.**
 (b) **Remove the rear bottom insulation by removing the securing clamp and securing washer.**
 (c) **Remove the securing clamp at the top of the rear top insulation panel and slide the panel down from behind the heat exchanger.**
11. **Clean the top section of the heat exchanger with a bristle brush from front to back and then end to end between the finned tubes. Brush between the two boiler sections and clean the underside of the heat exchanger, taking care not to damage the insulation. Suitable brushes for cleaning the heat exchanger are:**
 - 2in diameter x 6in long bristle brush, or
 - 1in diameter x 2 1/2in long bristle brush.

Brush out the bottom of the combustion box and then replace the insulation panels and the heat exchanger baffles. (Fig. 17).

12. **Clean the burner as follows;** (Fig. 18 and 19).
 (a) **Disconnect the burner feed pipe nuts at each end and remove.**
 (b) **Remove the nut(s) and washer(s) securing the pilot bracket to the burner. Clear away any lint deposits that may have accumulated inside the burner. Replace the end plates and nut(s) and washer(s) ensuring that on burners with gaskets fitted, these are not damaged and fit flush to their sealing faces. Replace if necessary.**
13. **Clean the pilot as follows:**
 (a) **Disconnect and remove the pilot tube and adaptor.**
 (b) **Remove the adaptor and the pilot injector from the pilot head and clean these items.**
 (c) **Re-assemble the pilot components in the reverse order of dismantling.**
14. **Clean all traces of lint and dust from the lint arrester.**
15. **Replace the controls and lint arrester and all other items except the front panel in reverse order of dismantling.**
16. **Reconnect the gas union nut and turn on the tap 1/2 turn in a clockwise direction. (This will supply gas to the boiler only). Check for gas soundness. Replace the front panel.**
17. **Turn on the electrical supply to the boiler. (Ensure that all external controls are calling for heat).**
18. **Turn the thermostat to the “OFF” position (Fig. 15).**
19. **Slacken the pressure test point screw and connect a pressure gauge.**
20. **Hold in the grey button on the gas control valve (Fig. 7).**
21. **Press the piezo unit button and release. Repeat until the pilot lights. Hold the flame failure button for a further 15 seconds and then release. The pilot should then stay alight. If the pilot fails to remain alight twist the grey button clockwise and release, wait 3 minutes and start again from 20. The pilot flame should be without a yellow tip and be approximately 25 mm (1in) long. Adjust if necessary (Fig. 7).**
22. **Operate the boiler burner by turning the thermostat knob to its highest setting.**
23. **Check that the correct pressure corresponding to the range rated output is adequate for the installation (see data label). If necessary remove the cover screw and adjust the appliance governor (Fig. 15). (Turn the screw clockwise to increase pressure) ensuring that the position of the input indicator arrow on the data label is correctly set.**
24. **Turn the boiler thermostat off. Remove the pressure gauge and tighten the test point sealing screw.**
25. **Turn the boiler thermostat to its original setting noted at 3.**
26. **Replace the fire.**
27. **Service the fire as described in the separate instructions for the Fire Section.**

Exchange of Individual Components

In all cases it is necessary to carry out items 1 to 8 of the servicing instructions.

Thermocouple (Fig. 18)
1. Release the thermocouple nut at the control valve and the nut securing the thermocouple to the pilot bracket.
2. Withdraw the thermocouple.
3. Fit the new thermocouple securing at the control valve and pilot bracket.
4. Re-assemble in reverse order. Tighten only 1/4 turn with a spanner beyond finger tight.

Spark Electrode (Fig. 18)
1. Disconnect the spark electrode lead at the spark electrode.
2. Disconnect the locking nut securing the spark electrode to the pilot bracket and remove the spark electrode.
3. Fit the new spark electrode checking that the spark gap is between 3-5 and 4-5 mm and reconnect the spark electrode lead.
4. Test the piezo unit and check that the spark electrode is sparking correctly to the pilot shroud.
5. Re-assemble in reverse order.

Piezo Unit (Fig. 19)
1. Disconnect the igniter lead.
2. Unscrew the nut securing the piezo unit to the thermostat housing bracket and replace the igniter.
3. Reconnect the lead and check that the piezo unit is sparking correctly at the pilot shroud.
4. Re-assemble in reverse order.

Burner (Fig. 18 and Fig. 19)
1. Disconnect the burner feed pipe nuts at each end and remove the pipe.
2. Remove the two nuts and washers securing the pilot support bracket to the burner.
3. Remove the two screws securing the burner fixing bracket to the burner end plate and re-fit to the new burner.
4. Remove injector assembly (one nut) from burner and refit to new burner.
5. Re-assemble in reverse order.
Boiler Thermostat (Fig. 20)
1. Remove the thermostat knob.
2. Remove the screw securing the thermostat housing to the mounting bracket.
3. Unhook the thermostat housing and pull forward until the three spade electrical connections on the thermostat can be disconnected. Remove the capacitor from within the thermostat housing.
4. Remove the nut and washer securing the thermostat to the housing.
5. Replace the thermostat and re-assemble in the reverse order. Ensure that the green/yellow wire is fitted to the earth tag on the thermostat. Refit the thermostat knob.

Honeywell Gas Valve
1. Remove the thermostat housing and disconnect the wires from the valve, noting position.
2. Remove the inlet union from the valve inlet.
3. Disconnect the thermocouple nut at the valve.
4. Disconnect and remove the pilot feed pipe.
5. Disconnect the burner feed pipe.
6. Remove the thermostat mounting bracket, the valve heat shield and the valve mounting bracket.
7. Remove the adaptor from the valve outlet.
8. Individual sub-components of the valve may be replaced as outlined by Honeywell instructions.
9. Re-assemble the new valve in reverse order of dismantling using suitable jointing compound wherever necessary.

Insulation in Combustion Chamber
Remove the insulation as follows:
1. Remove the two side insulation panels by removing the securing clamps and sliding downwards from behind the lugs on the heat exchanger support bracket.
2. Remove the rear bottom insulation by removing the securing clamp and securing washer.
3. Remove the rear top insulation panel by sliding the panel down behind the heat exchanger.
4. Re-assemble with new insulation in reverse order.
Wall Fixing Bermuda 401 & 251

If the fire is to be Wall Mounted the two brackets supplied in the plastic bag require fitting to the support plate (packed with the fire section), using the four inner holes. The nuts, screws and washers required are in the plastic bag supplied with the fire section.

Wall Fixing

Support Brackets 2 off (401 Boiler only)

Controls Heat Shield

Gas Service Cock

Boiler Base

Fire Support Plate

Electrical Plug and Socket
Back Boiler Fixing Position
Short Parts List

<table>
<thead>
<tr>
<th>Key Number</th>
<th>G.C. Number</th>
<th>Description</th>
<th>Makers Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>183 530</td>
<td>Viewing Window</td>
<td>082109</td>
</tr>
<tr>
<td>51</td>
<td>393 180</td>
<td>Valve Control — Honeywell V4600C 1029</td>
<td>062623</td>
</tr>
<tr>
<td>56</td>
<td>384 686</td>
<td>Thermostat — Boiler</td>
<td>102027</td>
</tr>
<tr>
<td>57</td>
<td>183 630</td>
<td>Knob — Control — Thermostat — Ranco 83151/36</td>
<td>042717</td>
</tr>
<tr>
<td>59</td>
<td>183 936</td>
<td>Kit - Piezo Unit</td>
<td>040456</td>
</tr>
<tr>
<td>69</td>
<td>391 532</td>
<td>Burner — Pilot — Honeywell Q359A 1041</td>
<td>062638</td>
</tr>
<tr>
<td>70</td>
<td>391 664</td>
<td>Injector — Pilot — Honeywell 0-30A</td>
<td>062639</td>
</tr>
<tr>
<td>75</td>
<td>387 665</td>
<td>Electrode — Pilot Ignition — Kigass E3356</td>
<td>102024</td>
</tr>
<tr>
<td>76</td>
<td>183 628</td>
<td>Lead Electrode</td>
<td>042740</td>
</tr>
<tr>
<td>78</td>
<td>390 131</td>
<td>Thermocouple — 18in Honeywell Q309A 2606</td>
<td>102005</td>
</tr>
<tr>
<td>81</td>
<td>183 881</td>
<td>Injector/Stereomatic 4 — 1.55 mm</td>
<td>042857</td>
</tr>
<tr>
<td>82</td>
<td>393 360</td>
<td>Burner</td>
<td>042859</td>
</tr>
<tr>
<td>84</td>
<td>393 361</td>
<td>Arrester — Lint</td>
<td>040073</td>
</tr>
</tbody>
</table>