OPTIMA 800

WALL MOUNTED, ROOM SEALED, FAN ASSISTED, GAS COMBINATION BOILER

TECHNICAL INFORMATION
INSTALLATION
and
SERVICE
INSTRUCTIONS

Read these Instructions thoroughly before using the appliance

Phone numbers:

Installer ______________________

Service Engineer ______________________

Serial No. ______________________

FERROLI HELPLINE
FOR SERVICE INFORMATION OR HELP TELEPHONE: 021 313 1030
ALWAYS QUOTE YOUR SERIAL NUMBER FOR IMMEDIATE ASSISTANCE

FOR SERVICE INFORMATION
OR HELP PLEASE TELEPHONE
08707 282 885
Ferroli Ltd, Lichfield Road, Branston Ind Estate, Burton Upon Trent, Staffordshire DE14 3HD
<table>
<thead>
<tr>
<th>Page</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>General Description</td>
</tr>
<tr>
<td>4</td>
<td>Related Documents</td>
</tr>
<tr>
<td>5</td>
<td>Technical Data</td>
</tr>
<tr>
<td>6</td>
<td>Technical Data sheet</td>
</tr>
<tr>
<td>7</td>
<td>Appliance Dimensions</td>
</tr>
<tr>
<td>8</td>
<td>Boiler Flow Diagram</td>
</tr>
<tr>
<td>9</td>
<td>Key of boiler flow diagram</td>
</tr>
<tr>
<td>10</td>
<td>Installation Details</td>
</tr>
<tr>
<td>10</td>
<td>Location of Boiler</td>
</tr>
<tr>
<td>10</td>
<td>Air Supply</td>
</tr>
<tr>
<td>12</td>
<td>Flue System</td>
</tr>
<tr>
<td>12</td>
<td>Gas Supply</td>
</tr>
<tr>
<td>12</td>
<td>Water System</td>
</tr>
<tr>
<td>14</td>
<td>Central Heating Pump</td>
</tr>
<tr>
<td>14</td>
<td>Sizing of expansion vessel</td>
</tr>
<tr>
<td>15</td>
<td>Installation of Boiler</td>
</tr>
<tr>
<td>15</td>
<td>Unpacking</td>
</tr>
<tr>
<td>15</td>
<td>Mounting the Boiler Jig on the Wall (rear flue)</td>
</tr>
<tr>
<td>15</td>
<td>Mounting the Boiler Jig on the Wall (side flue)</td>
</tr>
<tr>
<td>16</td>
<td>Drilling template</td>
</tr>
<tr>
<td>17</td>
<td>Preparing the Flue Assembly</td>
</tr>
<tr>
<td>18</td>
<td>Connecting the Boiler</td>
</tr>
<tr>
<td>20</td>
<td>Fitting the Flue Assembly</td>
</tr>
<tr>
<td>20</td>
<td>Electrical Installation</td>
</tr>
<tr>
<td>21</td>
<td>Commissioning &amp; Testing</td>
</tr>
<tr>
<td>21</td>
<td>Filling the Central Heating System</td>
</tr>
<tr>
<td>21</td>
<td>Filling the Domestic Hot Water System</td>
</tr>
<tr>
<td>21</td>
<td>Electricity Supply</td>
</tr>
<tr>
<td>21</td>
<td>The Gas Installation</td>
</tr>
<tr>
<td>22</td>
<td>To Light the Boiler</td>
</tr>
<tr>
<td>23</td>
<td>To Range Rate the Boiler C.H.</td>
</tr>
<tr>
<td>24</td>
<td>D.H.W. Burner Pressure</td>
</tr>
<tr>
<td>24</td>
<td>System operation</td>
</tr>
<tr>
<td>24</td>
<td>Handing Over to the User</td>
</tr>
<tr>
<td>25</td>
<td>General Wiring Diagram</td>
</tr>
<tr>
<td>26</td>
<td>Electrical Functional Flow Wiring Diagram</td>
</tr>
<tr>
<td>27</td>
<td>Short explanation on electrical functional drawing VM6.1S</td>
</tr>
<tr>
<td>27</td>
<td>Short explanation on electrical functional drawing Low V DC</td>
</tr>
<tr>
<td>29</td>
<td>Illustrated Wiring Diagram</td>
</tr>
<tr>
<td>30</td>
<td>General fault finding</td>
</tr>
<tr>
<td>31</td>
<td>General Test + fault finding - Chart 1</td>
</tr>
<tr>
<td>32</td>
<td>General Test + fault finding - Chart 2</td>
</tr>
<tr>
<td>33</td>
<td>General Test + fault finding - Chart 3</td>
</tr>
<tr>
<td>34</td>
<td>General Test + fault finding - Chart 4</td>
</tr>
<tr>
<td>35</td>
<td>General Test + fault finding - Chart 5</td>
</tr>
<tr>
<td>36</td>
<td>General Test + Check of air flow through boiler - Chart 6</td>
</tr>
<tr>
<td>37</td>
<td>Replacement of parts</td>
</tr>
<tr>
<td>39</td>
<td>Detail gas valve</td>
</tr>
<tr>
<td>39</td>
<td>Details combustion chamber</td>
</tr>
<tr>
<td>40</td>
<td>Cold water flow switch and filter</td>
</tr>
<tr>
<td>41</td>
<td>Honeywell gas valve</td>
</tr>
<tr>
<td>41</td>
<td>Printed circuit board (P.C.B)</td>
</tr>
<tr>
<td>42</td>
<td>Thermostats</td>
</tr>
<tr>
<td>42</td>
<td>Temperature sensors</td>
</tr>
<tr>
<td>42</td>
<td>Pressure relief valve</td>
</tr>
<tr>
<td>42</td>
<td>Pump</td>
</tr>
<tr>
<td>43</td>
<td>Automatic air vent</td>
</tr>
<tr>
<td>44</td>
<td>Pressure/temperature gauge</td>
</tr>
<tr>
<td>44</td>
<td>D.H.W. expansion vessel</td>
</tr>
<tr>
<td>44</td>
<td>C.H. selector switch</td>
</tr>
<tr>
<td>45</td>
<td>Time clock</td>
</tr>
<tr>
<td>46</td>
<td>Removal of fault diagnostic/temperature control</td>
</tr>
<tr>
<td>46</td>
<td>Air pressure switch</td>
</tr>
<tr>
<td>47</td>
<td>Removal and re-pressurising of C.H. expansion vessel</td>
</tr>
<tr>
<td>48</td>
<td>Annual Servicing Instructions</td>
</tr>
<tr>
<td>49</td>
<td>Spare Parts List</td>
</tr>
<tr>
<td>50</td>
<td>Domestic Hot Water Performance + Modureg</td>
</tr>
<tr>
<td>51</td>
<td>General Wiring Diagram</td>
</tr>
<tr>
<td>52</td>
<td>Fast Fault Finding</td>
</tr>
<tr>
<td>53</td>
<td>Special Installation Possibilities</td>
</tr>
</tbody>
</table>
General Description

The Ferroli **OPTIMA 800** is a wall mounted, room sealed, fan assisted, combination boiler for Central Heating (C.H.) and domestic Hot Water (D.H.W.).

The boiler is of lightweight construction and the heat exchanger provides Central Heating and Domestic Hot Water from an integrally designed unit. The boiler contains its own expansion vessel for sealed systems. The wall mounting jig contains all the isolating cocks for the water and gas supplies which can be fitted to the wall and provided with all the necessary gas and water connections prior to the boiler being attached. The flue can either be left hand, right hand or rear. There are three flue lengths available and they are 0.75 metres (for wall thickness up to 565 mm), 2 metres (for wall thickness up to 1615 mm) and 3 metres (for wall thickness) up to 2815 mm. These wall thicknesses assume a rear flue outlet. For side outlet the effective wall thickness for each flue length is reduced by 91 mm plus the distance of the appliance from the side wall. The Central Heating and the Domestic Hot Water temperature is controlled by the Honeywell Modreg valve in conjunction with the P.C.B. There is a limit thermostat on the central heating circuit which operates at 88°C and a limit thermostat in the Domestic Hot Water circuit which operates at 70°C. There is also an overheat cut-off thermostat which will shut the boiler down completely and this thermostat operates at 100°C. The boiler is fitted with its own Central Heating pump. The pump is switched ON/OFF by the time clock and/or a 24 Volt room thermostatic pump circuit also has a 6 minute over-run time. There is a Domestic Hot Water flow switch fitted and when there is a demand for Domestic Hot Water (flow of more than 0.5 gallon/minute, 2.5 litre/minute) the Central Heating pump is switched off making available the maximum output of the gas burner for Domestic Hot Water. On the P.C.B. the maximum output for Central Heating can be set. This does not influence the maximum output for domestic hot water. At the factory the central heating output is pre-set to maximum. The appliance is not suitable for external installation.

Related Documents

This appliance must be installed strictly in accordance with these instructions:


Local Building Regulations

The Building Regulations.

The Buildings Standards (Scotland - Consolidated) Regulations

British Standards Codes of Practice:

B.S. 7593 1993 TREATMENT OF WATER IN DOMESTIC HOT WATER CENTRAL HEATING SYSTEMS
B.S. 5548 1990 INSTALLATION OF HOT WATER SUPPLIES FOR DOMESTIC PURPOSES
B.S. 5440 PART 1 FLUES
B.S. 5440 PART 2 AIR SUPPLY
B.S. 5449 1990 FORCED CIRCULATION HOT WATER SYSTEMS
B.S. 6798 1987 INSTALLATION OF GAS FIRED HOT WATER BOILERS
B.S. 6891 1989 GAS INSTALLATIONS
B.S. 7671 1992 IEE WIRING REGULATIONS

Model Water Bye Laws.
### Technical Data

<table>
<thead>
<tr>
<th>Metric</th>
<th>Imperial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Heat Input D.H.W &amp; C.H.</td>
<td>27.8 kW</td>
</tr>
<tr>
<td>Minimum Heat Input D.H.W &amp; C.H.</td>
<td>11.0 kW</td>
</tr>
<tr>
<td>Nominal Heat Output D.H.W &amp; C.H.</td>
<td>22.3 kW</td>
</tr>
<tr>
<td>Minimum Heat Output D.H.W &amp; C.H.</td>
<td>8.1 kW</td>
</tr>
<tr>
<td>(See section 8.6 for range setting of Central Heating - D.H.W is preset and not adjustable)</td>
<td></td>
</tr>
<tr>
<td>Maximum Gas Rate</td>
<td>2.65 m³/h</td>
</tr>
<tr>
<td>Burner Setting Pressure</td>
<td>15.3 mbar (maximum)</td>
</tr>
<tr>
<td>Minimum Burner Pressure</td>
<td>2.5 mbar</td>
</tr>
<tr>
<td>Injector Marking (Main Burners)</td>
<td>210</td>
</tr>
<tr>
<td>Injector Size (4 off)</td>
<td>2.10 mm</td>
</tr>
<tr>
<td>Dimensions (overall):</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>1020 mm</td>
</tr>
<tr>
<td>Width</td>
<td>490 mm</td>
</tr>
<tr>
<td>Depth</td>
<td>360 mm</td>
</tr>
<tr>
<td>Weight (net)</td>
<td>51 kg</td>
</tr>
<tr>
<td>Weight (gross)</td>
<td>53 kg</td>
</tr>
<tr>
<td>Electricity supply:</td>
<td></td>
</tr>
<tr>
<td>External fuse</td>
<td>240 V - 50 Hz</td>
</tr>
<tr>
<td>Internal fuses on P.C.B.</td>
<td>F2A to BS4265 - (2 Amp. Fast)</td>
</tr>
<tr>
<td>Central Heating:</td>
<td></td>
</tr>
<tr>
<td>Max. Flow Temperature</td>
<td>85°C</td>
</tr>
<tr>
<td>Temperature Rise Across Boiler</td>
<td>20°C</td>
</tr>
<tr>
<td>Domestic Hot Water Flow:</td>
<td></td>
</tr>
<tr>
<td>30°C Rise</td>
<td>10.7 litres/min</td>
</tr>
<tr>
<td>32°C Rise</td>
<td>10.0 litres/min</td>
</tr>
<tr>
<td>35°C Rise</td>
<td>9.2 litres/min</td>
</tr>
<tr>
<td>40°C Rise</td>
<td>8.0 litres/min</td>
</tr>
</tbody>
</table>
### Technical Data Sheet (Cont.)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Imperial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Domestic Hot Water Flow</td>
<td>2.5 litres/min</td>
</tr>
<tr>
<td>Maximum Domestic Cold Water Inlet pressure</td>
<td>10 bar</td>
</tr>
<tr>
<td>Minimum Heating Circuit Pressure</td>
<td>0.8 bar</td>
</tr>
<tr>
<td>Maximum Heating Circuit Pressure</td>
<td>3.0 bar</td>
</tr>
<tr>
<td>Boiler Water Capacity: Heating Domestic Hot Water</td>
<td>1.5 litres</td>
</tr>
<tr>
<td></td>
<td>0.5 litres</td>
</tr>
<tr>
<td>Connections:</td>
<td></td>
</tr>
<tr>
<td>Gas</td>
<td>22 mm</td>
</tr>
<tr>
<td>Domestic Hot Water Outlet</td>
<td>15 mm</td>
</tr>
<tr>
<td>Domestic Cold Water Inlet</td>
<td>15 mm</td>
</tr>
<tr>
<td>Pressure Relief Valve Drain</td>
<td>15 mm</td>
</tr>
<tr>
<td>Central Heating Flow</td>
<td>22 mm</td>
</tr>
<tr>
<td>Central Heating Return</td>
<td>22 mm</td>
</tr>
</tbody>
</table>

### Minimum Installation Clearances:

<table>
<thead>
<tr>
<th>Metric</th>
<th>Imperial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sides - Left hand</td>
<td>5 mm*</td>
</tr>
<tr>
<td>Right hand</td>
<td>5 mm*</td>
</tr>
<tr>
<td>Front</td>
<td>50 mm**</td>
</tr>
<tr>
<td>Minimum Clearance below</td>
<td>200 mm</td>
</tr>
<tr>
<td>Minimum Clearance above</td>
<td>100 mm</td>
</tr>
</tbody>
</table>

### Notes:

* If using a side outlet flue then the minimum clearance on the flue outlet side of the appliance must be increased to 75 mm (3 in).

** Access to the front of the boiler must be available for maintenance (min. 600 mm)
Appliance Dimensions

FRONT VIEW

LEFT SIDE VIEW

REAR VIEW

Key
1. Electricity cable entry
2. Gas supply
3. Domestic Hot Water outlet
4. Domestic Cold Water inlet
5. Central Heating Pressure relief valve
6. Central Heating Flow outlet
7. Central Heating Return inlet

Fig. 1
Key
1. Fixing point
2. Flue terminal
3. Flue/air intake hood
4. Sealing gasket
5. Room sealed compartment
6. Control panel
7. Gas inlet
8. Domestic hot water outlet
9. Cold water inlet
10. Central heating flow outlet
11. Central heating return inlet
12. D.H.W. draining point
13. Central heating safety valve
14. Air inlet to fan
15. Fan
16. Air outlet from fan (+++)
17. Air distribution screen
18. Combustion - heat exchanging compartment
19. Burner assembly
20. Main injector
21. Burner
22. Combustion chamber insulation
23. Copper heat exchanger for C.H. + D.H.W
24. Flue collector from heat exchanger
25. Internal flue exit
26. Flue/surplus air collector
27. Air pressure control damper
28. Central heating pump
29. C.H. waterway of the heat exchanger
30. C.H. flow temperature sensor
31. Air separator
32. Automatic air vent
33. Cold water inlet filter
34. Cold water flow switch
35. Cold water flow limiter
36. Domestic hot water expansion vessel (optional)
37. D.H.W. waterway of the heat exchanger
38. D.H.W. temperature sensor
39. Air pressure switch
40. Operator gas valve
41. Modulating regulator (Modureg) gas valve
42. Burner pressure test point
43. Overheat cut-off thermostat
44. Central heating limit thermostat
45. Central heating frost thermostat
46. D.H.W limit thermostat
47. Heat exchanger venting point
48. Temperature sensing phial
49. Expansion vessel
50. Fan air inlet pressure test point
51. Fan air outlet pressure test point
52. Flue outlet pressure test point
53. C.H. selector switch
54. Time clock
55. C.H. boiler thermostat
56. C.H. temperature/pressure gauges
57. Control box with P.C.B.
58. Inner flue duct
59. Outer air intake duct
60. Modulating balance tube
61. 240 V + 24 V roomstat terminal blocks
62. Ignition electrode
63. Flame sensing electrode
64. Automatic ignition control panel
65. 1. gas valve operator 240V
66. 2. gas valve operator 240V
67. Automatic control reset knob
68. Fault diagnostic/temperature control panel
69. P.C.B. (printed circuit board)
70. D.H.W. thermostat
71. Gas inlet pressure test point
Installation Details

Gas Safety (Installation & Use) Regulations: 1984

In the interest of safety, it is the law that all gas appliances are installed by a competent person in accordance with the above Regulations, Building Regulations/Building Standards Scotland, Codes of Practice, current I.E.E Regulations and the byelaws of the Local Water Undertaking. Failure to comply with the Regulations may lead to prosecution; it is in your interest and that of safety to ensure that the law is complied with.

Important - If the boiler is to be fitted in a timber framed building it should be fitted in accordance with the British Gas publication; Guide for Gas Installation in Timber Frame Housing; Reference DM2. If in doubt advice must be sought from the Local Gas Region of British Gas Plc.

Location of Boiler

The installation of the Optima 800 must be on a suitable non-combustible load bearing wall which will provide an adequate fixing for the boiler mounting bracket assembly. The location should be in an area where the water pipes will not be subjected to frost conditions. In siting the combination boiler the following limitations must be observed:

The combination boiler may be installed in any room or internal space, although particular attention is drawn to the requirements of the current, & e.g. wiring regulations and in Scotland the electrical provisions of the building regulations applicable in Scotland, with respect to the installation of the combination boiler in a room or internal space containing a bath or shower.

Where a room sealed appliance is installed in a room containing a bath or shower any electrical switch or appliance control utilising mains electricity, should be so situated that it cannot be touched by a person using the bath or shower.

Terminal Position

<table>
<thead>
<tr>
<th>POSITION</th>
<th>MINIMUM SPACING (fig. 3)</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Directly below an openable window, air vent, or any other ventilation opening</td>
<td>300</td>
</tr>
<tr>
<td>B</td>
<td>Below gutters, soil pipes or drainpipes</td>
<td>75</td>
</tr>
<tr>
<td>C</td>
<td>Below Eaves</td>
<td>100</td>
</tr>
<tr>
<td>D</td>
<td>Below a Balcony</td>
<td>100</td>
</tr>
<tr>
<td>E</td>
<td>From vertical drainpipes or soilpipes</td>
<td>75</td>
</tr>
<tr>
<td>F</td>
<td>From internal or external corners</td>
<td>100</td>
</tr>
<tr>
<td>G</td>
<td>Above adjacent ground or balcony level</td>
<td>100</td>
</tr>
<tr>
<td>H</td>
<td>From a surface facing the terminal</td>
<td>600</td>
</tr>
<tr>
<td>I</td>
<td>Facing another terminal</td>
<td>1,200</td>
</tr>
<tr>
<td>J</td>
<td>From opening (door/window) in carport into dwelling</td>
<td>1,200</td>
</tr>
<tr>
<td>K</td>
<td>Vertically from a terminal on the same wall</td>
<td>300</td>
</tr>
<tr>
<td>L</td>
<td>Horizontally from a terminal on the same wall</td>
<td>300</td>
</tr>
<tr>
<td>N</td>
<td>Below carport</td>
<td>600</td>
</tr>
</tbody>
</table>

A Quinell Barrat and Quinell guard (part. No. C2) should be screwed to the wall centrally over the terminal, when the distance is less than 2 m from the outside floor.

Air Supply

The room in which the boiler is installed does not require a purpose provided vent. If the boiler is installed in a cupboard or compartment, permanent air vent are required in the cupboard or compartment, one at high level one at low level, either direct to the outside air or to a room. Both high and low level air vents must communicate with the same space.

Minimum effective area requirements of compartment air vents (for cooling purposes only) (fig. 4)
Terminal Position

Air supply

<table>
<thead>
<tr>
<th>APPLIANCE FLUE SYSTEM LOCATION</th>
<th>ROOM-SEALED</th>
<th>AIR VENT AREAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN ROOM</td>
<td>NIL</td>
<td></td>
</tr>
<tr>
<td>IN COMPARTMENT OPEN TO ROOM</td>
<td>HIGH LEVEL: 252 cm³ (55 in³)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOW LEVEL: 252 cm³ (55 in³)</td>
<td></td>
</tr>
<tr>
<td>IN COMPARTMENT OPEN TO OUTSIDE</td>
<td>HIGH LEVEL: 126 cm³ (21 in³)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOW LEVEL: 126 cm³ (21 in³)</td>
<td></td>
</tr>
</tbody>
</table>

NOTES
* If a side outlet flue is to be used, a clearance of 75 mm will be needed on the flue outlet side of the boiler.
** Access to the front of the boiler must be available for maintenance (min 600 mm).
Flue system
The boiler allows the flue outlet to be taken from the rear of the boiler or from either side.
A standard flue length of 0.75 metres is provided. Alternative lengths of two or three metres can be supplied (equivalent to wall thicknesses of up to 565, 1815 and 2815 mm for rear flues and deduct 91 mm plus distance from side wall for side outlet flues).
It is absolutely essential, to ensure that products of combustion discharging from the terminal cannot re-enter the building, or enter any adjacent building, through ventilators, windows, doors, natural air infiltration, or forced ventilation/air conditioning.

Gas Supply
If necessary the local Gas Region should be consulted, at the installation planning stage, in order to establish the availability of an adequate supply of gas.
An existing service pipe must not be used without prior consultation with the Local Gas Region.
A gas meter can only be connected by the Local Gas Region, or by a Local Gas Region's Contractor.
Installation pipes should be fitted in accordance with BS6991-1988.
Appliance inlet working pressure must be 20 mbar MINIMUM.
Pipe work from the meter to the appliance inlet to the combination boiler must be of an adequate size.
The boiler requires 2.65 m³/h (93.6 ft³/h) of natural gas.
Do not use pipes of a smaller size than the combination boiler inlet gas connection.
The complete installation must be tested for gas soundness and purged as described in BS6981-1988. All pipework must be adequately supported. An isolating gas valve is provided and should be fitted on the manifold assembly.

Water System

Central Heating
It must be a sealed system. Detailed recommendations are given in BS6798, BS5449, BS6700 and CP342 Part 2. Pipework not forming part of the useful heating surface should be insulated to prevent any heat losses or possible freezing (i.e. in roof spaces or ventilated underfloor spaces). Drain taps should be positioned at the lowest point of the system in accessible locations to permit the whole system to be drained down. The drain taps should be in accordance with BS2879. Copper tubing to BS2871, Part 1 is recommended for water carrying pipework. Pipework in horizontal runs should have a gradient where possible to facilitate the removal of air. It should be ensured that the boiler heat exchanger is not a natural point for collecting air. A typical heating system with domestic hot water circuit is illustrated in fig 6.

Important - A bypass must be fitted to ensure a minimum flow rate through the boiler of 6 l/min. The bypass should be fitted as far as possible from the boiler if thermostatic radiator valves are fitted throughout.

Make up Water
Provision must be made for replacing water lost from sealed system. Reference should be made to BS6798, for methods of filling and making up sealed systems. There must be no direct connection between the boiler's central heating system and the mains water supply. The use of mains water to charge and pressurise the system directly, is conditional upon the Local Water Byelaw. Again any such connection must be disconnected after use.

Domestic Hot Water
Always fit a water softener or descaler in «hard water areas». A 15 mm copper connection point on the boiler jig bracket for attaching to the main supply is provided. The maximum domestic water pressure for the inlet supply is 10 bar (145 P S.I.). If the cold mains supply exceeds 5 bar (72 P.S.I.), a water governor or pressure reducing valve must be fitted by the installer into the mains supply in an inconspicuous but accessible position preferable between 3 and 5 metres (10-16 ft) before the appliance.
Such a valve must be approved by the Water Research Council.

Attention - is drawn to the Model Water Byelaws.
Fittings manufactured from duplex (alpha-beta) brass are not acceptable for underground use and certain water undertakings will not accept their use above ground.
NOTE: A bypass must be fitted as far as possible from the boiler if thermostatic radiator valves are fitted throughout.
Built-in Central Heating Water Circulating Pump

The pump head available for circulating the water is given in fig. 8.

N.B. - The pump is factory set at position 3. The pump is a Grundfos type 15-50 UPS series.

Grundfos Pump performance graph

Note - Minimum flow through boiler heat exchanger at any time should not fall below 6 litres per minute.
If required an additional expansion vessel may be fitted to the central heating return inlet.
If the total volume of water in the system exceeds 40 litres an additional expansion vessel must be fitted to the central heating return inlet.

Pump performance curve Grundfos UPS 15-50

1 2 3 Speed settings
A Boiler pressure drop
B Max. available pump head C.H.

SIZING OF ADDITIONAL EXPANSION VESSELS:
Deduct from the value given in the table the 7 litre vessel supplied.

Note
1. Fill C.H. installation to min. 1.5 bar.
2. Select by preference the expansion vessel for increased system pressure of 2.0 bar
3. Expansion vessel must be fitted to Central Heating Return Inlet
4. The standard 7 litres expansion vessel is charged to 1 bar
Installation

Note - To mount the boiler on the wall, a two person lift will be needed.

1.0 UNPACKING

The appliance is delivered in 2 cartons.

1.1 The large carton contains the boiler, and the Installation/Servicing and Users Instructions.
1.2 The second carton contains the mounting jig assembly, complete with isolating valves, the assembly fixing screws and wall plugs (x4), the boiler mounting nuts and washers (x2), drilling template, flue assembly and turret.

When the cartons are unpacked examine for any signs of damage in transit. All protective plastic should be left in place until installation is complete.

2.0 FIXING THE MOUNTING JIG ON THE WALL (Rear Wall Flue Applications)

2.1 Select the boiler location carefully ensure that all requirements given in previous text are satisfied. Fig. 10 will also give guidance to fixing dimensions.

2.2 Locate template on wall, mark the positions of the four jig bracket fixing holes and the flue opening.
2.3 Carefully cut the circular hole (118 mm minimum diameter) for the flue assembly.
2.4 Using a 10 mm drill, drill 70 mm deep holes to accept the wall plugs, and insert wall plugs.
2.5 Fit the mounting jig assembly using the four fixing screws provided (Ensure that all the service cocks are in the OFF position). Operate valves several times to ensure they are free.
2.6 With the exception of the connection to the pressure relief valve, make all the water and gas connections to the jig bracket valves. Fully tighten (fig. 11). Water connections can be made with compression or capillary fittings (before the gas inlet to the boiler there must be at least 100 mm of straight before any bends).

3.0 FIXING THE MOUNTING JIG ON THE WALL (Side Wall Flue Applications)

3.1 Select the boiler location carefully ensuring that all the requirements given in previous text are satisfied. Fig. 10 will also give guidance.
3.2 Locate the template on wall and mark the position of the four jig bracket fixing holes.
3.3 Using a 10 mm drill, drill 70 mm deep holes to accept the wall plugs, and insert wall plugs.
3.4 Fit the mounting jig assembly using the four fixing screws provided.
3.5 Extend a horizontal line from the centre of the rear flue outlet to the side wall.
3.6 Mark the centre line (vertically) for the flue assembly hole, and mark the centre of the hole.
3.7 Carefully cut the circular hole (118 mm minimum diameter) for the flue assembly.
Important Note - Always use two spanners to prevent twisting of soft copper pipework on the boiler.

Flush out the water system.

Note - The maximum inlet cold water pressure must not exceed 10 bar (145 P.S.I.) and a water governor or a pressure reducing valve will be required if the pressure is in excess of 5 bar (72 P.S.I.).

Ensure all pipework is adequately supported.

Drilling template

Fig. 10

1 = Electrical cable entry
2 = Gas supply
3 = Domestic Hot Water outlet
4 = Domestic Cold Water inlet
5 = Outlet Central Heating safety valve
6 = Central Heating flow outlet
7 = Central Heating return inlet

2 = 22 mm
3-4-5 = 15 mm
6-7 = 22 mm

Important Note - Always use two spanners to prevent twisting of soft copper pipework.

Note - The central heating safety valve (5) should be piped 15 mm to discharge safely outside the property.
4.0 PREPARING THE FLUE ASSEMBLY

4.1 Rear Flue Outlet (fig. 12)

Important - The aluminium flue pipe must protrude into the outside grill by 2 in (50 mm), never cut it to the same length as the plastic air pipe (aluminium flue pipe = plastic air inlet pipe + 50 mm)

Aluminium flue pipe length = Plastic air inlet pipe length plus 50 mm (2") longer.

4.1.1 Accurately measure the Wall thickness (P1)
4.1.2 From the end opposite to the terminal, cut the plastic air duct (dimension A1) to length (P1 + 105 mm).

Note - That the terminal is not included in A1.
4.1.3 Cut the metal flue duct to length (P1 + 155 mm) (dimensions F1).

Note - The metal flue pipe must be 50 mm (2 inches) longer than the plastic air inlet pipe.
4.1.4 Drill a 3 mm hole 15 mm from the plain end of plastic air duct.
4.1.5 Place flue components to one side to be used later.

4.2 Side Flue Outlet (fig. 13)

Important - The aluminium flue pipe must protrude into the outside grill by 2 in (50 mm), never cut it to the same length as the plastic air pipe.

Aluminium flue pipe length = Plastic air inlet pipe length plus 50 mm (2") longer.

4.2.1 Accurately measure the Wall thickness (P2)
4.2.2 Accurately measure the distance from the centre of the stud fixing of the mounting jig assembly to the side wall (Q2).
4.2.3 From the end opposite to the terminal, cut the plastic air duct (dimension A2) to length (P2 + Q2 + 125 mm).

Note - That the terminal is not included in length A2.
4.2.4 Cut the metal flue duct to length (P2 + Q2 + 175 mm) (dimension F2).

Note - The metal flue pipe must be 50 mm (2 inches) longer than the plastic air inlet pipe.
4.2.5 Drill a 3 mm hole 15 mm from the plain end of plastic air duct.
4.2.6 Place flue components to one side to be used later.
5.0 CONNECTING THE BOILER

5.1 Place the boiler on its back.

5.2 Remove the boiler base plate, four screws (fig. 16). Remove the plugs fitted to the boiler water connections. Remove the bag of sealing washers from the boiler pipework. Remove the front panel by gripping on both sides and pulling away from the main boiler.

5.3 Lift boiler as shown in fig. 15 onto the top studs and fit supplied nuts and washers hand tight.

5.4 Lift at bottom to engage the water and gas connections. Tighten central heating flow and return, and the domestic hot water inlet and outlet, using appropriate sealing washers. Tighten the gas union.

5.5 Screw the pressure relief valve adaptor provided, through the jig bracket into the valve, using the remaining washer (fig. 17).

5.6 Connect the pressure relief valve discharge pipe (15 mm) to the outside of the building, where possible over a drain. The discharge must be such that it will not be hazardous to occupants or passers-by cause damage to external electric components or wiring. The pipe should be directed towards the wall.

It must not discharge above an entrance or window, or any type of public access. The installer must consider that the overflow could discharge boiling water.
6.0 FITTING THE FLUE ASSEMBLY
6.1 With Sufficient Clearance To Insert Assembly From Inside
6.1.1 Push the air duct seal onto the air duct at the cut end
6.1.2 Insert the flue assembly into the wall.
6.1.3 Make good internal wall face.
6.1.4 Fully insert the flue assembly into the turret spigot. Insert the self tapping screw supplied. Fully tighten.
6.1.5 Secure the turret.
6.1.6 Slide the air duct seal over the joint.
6.1.7 Check the terminal relationship with the wall as shown in fig. 12.
6.1.8 Make good the outside wall face, re-weatherproof.
6.2 With insufficient Clearance To Insert Assembly From Inside
6.2.1 From outside, push flue duct, then the air duct through the wall.
6.2.2 Push the air duct seal over the air duct.
6.2.3 Fully insert the flue duct into the turret, then the air duct. Slide, back the seal and secure the air duct with the self tapping screw provided.
6.2.4 Slide the seal over the joint and secure the turret.
6.2.5 Continue as detailed in 6.1.8 above.

7.0 ELECTRICAL INSTALLATION

Electrical Installation must be carried out by a competent electrician. The appliance is to be connected to a 240 V - 50 Hz supply (see fig. 18). The supply fuse rating is 3A. The terminals are accessible after removing the white base plate and single screw securing the terminal cover (see fig. 18).

7.1 Procedure
7.1.1 The supply cable must be no less than 0.75 mm (24x0.2 mm) to BS6500 table 16.
7.1.2 The earth conductor must be cut longer than the live and neutral (fig. 19).
7.1.3 Connect the Supply Cable to the terminal block marked 240 V - 50 Hz, L, N, the supply cable is to be connected as follows:
  i) Connect the brown wire to the L (live) terminal.
  ii) The blue wire to the N (neutral) terminal.
  iii) The green/yellow wire to the (earth) terminal.
7.1.4 Secure the cable with the cable clamp. The supply cable can be connected to the mains supply by the use of an unswitched shuttered socket-outlet in conjunction with the 3A fused 3 pin plug both in accordance with BS 1363. This provides complete isolation. Alternatively, a fused double pole switch having a contact separation of at least 3 mm, in all poles and provided just for the boiler and its external controls can be used. A wiring diagram is provided on the appliance, attached to the rear of the front panel. In addition, there is one in this manual (fig. 25). Attention is drawn to the requirements of the current I.E.E. Regulation and in Scotland, the electrical provisions of the Building regulations.

7.2 Room Thermostat (fig. 18) (or remote time clock connection)
7.2.1 Please note that the room thermostat, clock switch connection is 24 V. To connect mains voltage to these terminals will seriously damage the printed circuit board. The room thermostat and clock switch connector block is situated within the connector box. Twin core cable should be used for this connection (terminals 4 and 5).
7.2.2 If using a remote 240 Volt time clock ensure that the motor and switch connections are totally separate in the clock and that the switch connections are independent for the 24 Volt terminals (4 and 5) on the boiler.

External controls: room stat or remote time clock in the place of loop terminals 4 and 5. Please note 24 V only, use only voltage free contacts.

IMPORTANT
If 240 V is connected to terminals 4 or 5, damage will be caused to the P.C.B.
8.0 COMMISSIONING AND TESTING

8.1 Filling the Central Heating System

Remove the top front panel by gripping both sides and pulling forward away from main boiler assembly.
Loosen the cap of the automatic air vent (fig. 20) and leave it loose.
Open the central heating flow and return cocks (fig. 11).
Gradually fill the system as detailed in Make up Water.
While filling, vent the heat exchanger at venting point by loosening cap (fig. 20) and vent each radiator
Tighten cap on heat exchanger air vent
Ensure the working pressure, when filled, is between 1 to 1.5 bar on the pressure gauge (see technical data).
Check the system for leaks.
Flush system in accordance with BS 7593.

8.2 Filling the Domestic Hot Water System
Close all hot water draw off points. Open main cold water stop cock and ensure the cold water inlet cock is open at the boiler jig bracket (fig. 11). Slowly open each hot tap in turn until clean water, free from air pockets, is seen.
Check system for leaks.

8.3 Electricity Supply
Carry out preliminary checks (i.e. earth continuity, polarity, short circuit and resistance to earth using a suitable multimeter).

8.4 The Gas Installation
The whole of the gas installation including the meter, should be inspected and tested for soundness, and purged in accordance with the recommendations of BS6891-1988.
B.5 To Light the Boiler (fig. 21)

a. Open controls panel door.
b. Switch on electricity supply.
c. Adjust room thermostat and all external controls to «ON». Check operation of pump
d. Turn the boiler thermostat to maximum. Fan will run (A waiting time of max 3 minutes before fan will run is possible!), and main burner will light.
e. Temporarily turn off by switching off electricity supply

Important Note: If the burner stops for C.H. only after a waiting time of 3 minutes will the boiler will light again!
Burner Pressure C.H. and D.H.W.

8.6 To Range Rate the Boiler C.H. (not required for standard installations).

The boiler can be range rated for an output from 8.1 kW (27,645 Btu/h) up to 22.3 kW (76,000 Btu/h). When the boiler is supplied it is factory set at the maximum output 22.3 kW (76,000 Btu/h).

Procedure

a. Release the control panel fixing screws (fig. 30) and lower panel.
b. Loosen the screw in the burner pressure test point (fig. 22) and attach a gauge.
c. Switch on the electricity supply to re-light the main burner.

Note 1 - Modulation is available on central heating, so the procedures must be carried out while the system is relatively cold. Recheck boiler thermostat is set to maximum.

d. Adjust the potentiometer P1 on the PCB (fig. 24) in the control panel until the required burner pressure is obtained (Anticlockwise to reduce the pressure).

Note 2 - Short circuit 04-05 only on connector X3 on the P.C.B.
- Boiler starts for C.H.
- Wait time is excluded.
- Max burner pressure C.H. can be checked/set with potentiometer P1.

Note 3 - The range of inputs with corresponding burner pressure is given on the Data badge which is situated behind the top front panel. Further information is on (fig. 23).
e. With the pressure set, turn off the electrical supply and mark the set input on the Data badge (with sticker supplied).

Burner Pressure C.H. and D.H.W.
P1 = C.H. range rating to be set on site (if required)
P2 = Max output D.H.W. (factory set, not to be adjusted)
P3 = D.H.W. temperature (factory set, not to be adjusted)
P1 Adjust with screwdriver!
J1 Fitted
J2 Not fitted
D.H.W. Burner Pressure

The domestic hot water burner pressure is not range rateable and not adjustable but the maximum and minimum burner pressure should be checked as follows:

a. Check electricity supply is still off.
b. Open a D.H.W. tap at high flow until the water runs cool and leave running.
c. Switch on the electricity supply
d. The pressure should be 15.3 mbar +/- 0.5 mbar.
e. Disconnect one of the wires from the «Modureg» (fig. 22), this will reduce the burner to minimum which should read 2.5 mbar +/- 0.5 mbar. If the burner pressure is not as stated check the inlet working pressure (fig. 22) which should be minimum 20 mbar. If that is correct, consult Ferroli. No attempt should be made to alter D.H.W. burner pressure.
f. Switch off electrical supply and close hot tap.
g. Reconnect the wire to the «Modureg». Remove pressure gauge, tighten the test screws.
h. Replace control panel (2 screws).
i. Turn on electricity supply, open a hot tap to full flow and when the burner lights, test for gas soundness with a leak detection fluid around the gas valve and connections including the pressure test point screws.

SYSTEM OPERATION

Let the boiler operate normally on central heating for about 30 minutes.

I) Vent radiators.
II) Vent heat exchanger.
III) Examine all pipework for leakage.
IV) Turn on a D.H.W. tap and check that the C.H. pump stops running.
V) As the D.H.W. temperature reaches 80°C check the burner for modulation
   Switch off electricity.
   Drain down the central heating system fully, and flush in accordance with B.S. 7593.
   Refill the system as previously instructed. Repeat the venting.
   Examine the system's water pressure and top up as necessary.
   Replace the casing front panel and close the control panel cover.

HANDING OVER TO THE USER

After completion of installation and commissioning of the system:

a. Hand over the User's Instructions to the Householder and explain His/Her responsibilities under the Gas safety (Installation and Use) Regulations 1984.
b. Explain and demonstrate the lighting and shutting down procedure.
c. Explain the operation of the boiler including the use and adjustment of ALL system controls.
d. Advise the User of the precautions necessary to prevent damage to the system and to the building, in the event of the system remaining inoperative during frost conditions.

d. Stress the importance of regular servicing by a qualified Heating Engineer and that a comprehensive service should be carried out at LEAST ONCE A YEAR.
General Wiring Diagram

Key
16 Fan
32 Central heating pump
34 C.H. flow temperature sensor
38 Cold water flow switch
42 D.H.W. temperature sensor
43 Air pressure switch
46 Operator gas valve
47 Modulating regulator (MODURES) gas valve
49 Overheat cut-off thermostat
50 Heat exchanger limit thermostat
51 Heat exchanger frost thermostat
52 D.H.W. limit thermostat
61 C.H. selector switch
62 Time clock
63 C.H. boiler thermostat
68 Control box with P.C.B.
72 Room thermostat (not fitted)
80 Five pole terminal 240V + 24V
81 Spark electrode
82 Flame sensing electrode
83 Automatic ignition control panel
84 1 gas valve operator
85 2 gas valve operator
86 Automatic control reset knob
100 Fault diagnostic/temperature control panel
157 D.H.W. thermostat

NOTE:
The transformer on the P.C.B. has a built-in overheat protection. If this is open, all LED's will be off but the C.H. pump (32) will run switch off the boiler for at least 20 minutes.

J1 and J2: Jumpers
J1 Must be fitted
J2 Is not required
P1 = C.H. max output (to be set on site)
P2 = D.H.W. max output (factory set)
P3 = D.H.W. temperature (factory set)
Electrical Functional Flow Wiring Diagram

Note
All Contact shown in following condition:
• No electrical mains
• No domestic hot water flow
• Temperature too low
  (all mechanical thermostats closed)

Notes:
1. C.H. pump will be switched on if temperature of 50 (Heat exchanger limit thermostat) is too high.
2. C.H. pump will be switched on for 1 sec after D H W tap has been closed

34-42 Temperature sensors
25°C = 1000 Ohm
60°C = 1300 Ohm
80°C = 1490 Ohm

Key
16. Fan
32. Central heating pump
34. C.H. flow temperature sensor
38. Cold water flow switch
42. D.H.W. temperature sensor
43. Air pressure switch
47. Modulating regulator (Modureg) gas valve
50. Heat exchanger limit thermostat
51. Heat exchanger frost thermostat
61. C.H. selector switch
62. Time clock
63. C.H. boiler thermostat
72. Room thermostat (not fitted - linked in factory)
83. Automatic ignition control panel
157. D.H.W. thermostat

LED n°  signification:
1  Mains on/low voltage on
2  Domestic hot water flow switch (38) on
3  Central heating room thermostat (72) / clock (62) calling for heat
4  Sensor (34) or (42) calling for heat
5  Central Heating waiting time, a max. 3 minutes delay following
  shut off Boilerstat (63), Clock (62), Roomstat (72) or use of Hot Water
6  Demand for heat - fan relay (RL2) will be energised
7  Air pressure switch (43) on, air flow checked
8  Gas valve (43) energised

Fig 26
Short explanation on electrical functional drawing VMF6.1S

240 V AC - 24 V AC - 24 V DC

1.0 All contacts shown in following condition.
   No electrical mains voltage - Temperature too low (all mechanical thermostats closed).
1.1 The electrical systems can be divided into 4 main areas
1.2 240 V AC With fan, C.H. pump, spark igniter and fuses
1.3 24 V AC With 4 relays, on/off operator of combination gas valve, 24 V AC is available from a 240V/24V transformer.
1.4 24 V DC For power supply to the modulating coil (Modureg) of combination gas valve.
1.5 Low V DC For electronic control system.

2.0 240 V AC Fuses P 2 Amp (Fast)
2.1 RL2 contact of relay 2 controls directly the fan
2.2 Pump controlled by Relay 1.
2.3 Burner will be automatically ignited as soon as contact RL3 of relay 3 is energised.

3.0 24 V AC
3.1 Electronic Relay E3 on P.C.B. will be switched «on» as soon as there is any heat demand for heat from central heating.
3.2 In standby condition the air pressure switch should be in shown position (68-57 closed) and the fan should be off.
3.3 If 68-67 is not closed, relays (RLX) and (RL2) cannot be activated. This is a safety check on the correct function of the air pressure switch (no air pressure with fan off).
3.4 With 24 V AC between 68 and 60 and air pressure switch in the shown position, relay RLX will be activated.
3.5 The Relay RLX links the N.C. position of the air pressure switch, Relay RL2 will switch the fan to full speed.
3.6 The switch in the air pressure switch will change position if air flow is high enough for safe combustion and LED7 will be energised.
3.7 If the high limit thermostat (heat exchanger) demand heat and the air pressure switch was switched in the safe position (67-66 closed) relay RL3 can be energised.

4.0 24 V DC
4.1 24 V DC is necessary for the power supply amplifier 9, which drives the modulating coil (Modureg) on the combination gas control. Operating voltage on the coil is between 4 Volt and 25 Volt DC.
4.2 Attention - Never link the modulating coil with a wire or amper tester. Part of the P.C.B. will be destroyed. Testing can only be done with a voltage tester!

Short explanation on electrical functional drawing Low V DC

5.0 Low V DC Electronic Control System
5.1 On the Low V DC output is a Green LED (Light Emitting Diode - Mini Lamp) to indicate if Low V DC is available, if not replace fuse.
5.2 Domestic water flow switch; contact closed if water is running (minimum 2.5 L/min.).
5.3 Electronic relay E1 (if activated by the water flow switch) switches the control system from the central heating to domestic hot water and gives priority to Domestic Hot Water (Time delay of 2 seconds).
5.4 Central Heating Flow temperature sensor and Domestic Hot Water temperature sensor are electrical resistors with a positive temperature coefficient (P.T.C.).
   1000 Ohm at 25 degr. C. - 1300 Ohm at 60 degr. C. - 1490 Ohm at 80 degr. C.
   (These must not be looped for testing purposes as that will indicate «no heat required»).
5.5 Function of Low V DC circuit

5.5.1 Domestic Hot Water Taps closed: Contacts of electronic relay E1 as shown. Central heating continuous (selector switch turned to the right, Time Clock contact will be linked)

5.5.1.1 Electronic relay E2 is activated and will switch off the Relay RL1. The pump will be switched on! After switching off E2 Relay RL1 will remain deenergised for 6 minutes.

5.5.1.2 Attention - The C.H. pump will be switched off immediately if Relay 2 is activated (for example on activation of relay E1 through the water flow switch).

5.5.1.3 Amplifier 1 compares the Set Point of the central heating boiler thermostat (potentiometer on front panel) with the actual temperature of the C.H. sensor. If set point is higher as actual value, amplifier 2 and 3 will be activated and if relay E3 is switched on, the fan starts at full speed through relay RL2.

5.5.1.4 Amplifier 2 is a differential on/off amplifier on the P.C.B. This amplifier controls electronically the on/off differential of the flow temperature C.H.

5.5.1.5 Amplifiers 5 and 6 are security amplifiers which check if there is not abnormal situation on the temperature sensors. For example with an abnormal low electrical resistance (sensor linked) the amplifier 5 will switch off amplifiers 6,3 and 4 so the fan will be switched off and the burner will be closed down.

5.5.1.6 Amplifier 7 is the real modulating amplifier (PID) which controls the power amplifier 9 and so the voltage on the Modureg modulating coil of the combination gas valve. Amplifier 7 compares continuously the set value of the potentiometer 63 with the actual value of the sensor and will control the voltage on the Modureg coil to keep the flow temperature at the set value. If flow temperature is too high (min output burner higher than C.H. absorption) the burner will be on/off controlled by amplifier 1 (see 5.5.1.3) The Modureg can only control the gas flow to the burner within the preset minimum and maximum settings for safe ignition reasons. Min and max pressure of Modureg is mechanically set.

5.5.1.7 With potentiometer P1 on the P.C.B. the max output of the power amplifier 9 can be limited, through amplifier 8 on delivery from factory this potentiometer is set to max, giving max. C.H. output.

5.5.2 Domestic Hot Water tap open

Water flow minimum 0.5 Gallon/min (2.5 L/min.). The contact in the water flow switch closes and relay E1 will be activated. Several contacts of E1 are switched over:

5.5.2.1 A contact breaks and the central heating pump will be switched off immediately.

5.5.2.2 A contact bypasses central heating (the contact of Relay E2 is bridged).

5.5.2.3 A contact switches from the central heating boiler thermostat 63 to the Hot Water temperature set point potentiometer P3 on the P.C.B.

5.5.2.4 A contact switches from the central heating temperature sensor to the domestic hot water temperature sensor.

5.5.2.5 A contact switches from max. output C.H. potentiometer P1 to max. output D.H.W. P2.

5.6 Function of selector switch Central Heating.

5.6.1 Hot water only.

5.6.2 Heating timed and Hot Water

5.6.2.1 Fan and burner will start on "call for Heat" from (domestic) water flow switch.

5.6.2.2 Fan and burner and C.H. pump will start on call for Heat from frost thermostat. C.H. pump will stop 6 min. after frost thermostat contact breaks.

5.6.3 Heating continuous and Hot Water see 5.5.1 and 5.5.2.

5.6.3.1 See 5.6.2.1

5.6.3.2 See 5.6.2.2

5.6.3.3 Fan and burner and C.H. pump will start on call for heat from Time Clock and Room thermostat (if fitted) C.H. pump will stop 6 min. after Time Clock or Room thermostat (if fitted) contacts break.
NOTE:
THE TRANSFORMER ON THE P.C.B. HAS A BUILT-IN OVERHEAT PROTECTION.
IF THIS IS OPEN, ALL LED'S WILL BE OFF BUT THE C.H. PUMP (32) WILL RUN
SWITCH OFF THE BOILER FOR AT LEAST 20 MINUTES

X4
DON'T CONNECT ANYTHING TO THIS CONNECTOR, THIS COULD DAMAGE THE P.C.B.

X3
TEST CONNECTOR X3
04 TEST
06 MODUREG MAX VOLTAGE
05 MODES
07

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
</table>
| 24 V | SHORT CIRCUIT 04-05 AND SHORT CIRCUIT 05-07: | SHORT CIRCUIT 04-05 ONLY: | BOILER STARTS FOR C.H.
| 240V ~ 50 Hz | - BOILER WILL START FOR C.H. - WAITING TIME IS EXCLUDED - P1 AND P2 OUT OF OPERATION - CHECK/SET MECHANICAL MAXIMUM ON MODUREG (47) | - WAITING TIME IS EXCLUDED - MAX BURNER PRESSION C.H. CAN BE CHECKED/SET WITH P1 |

J1 and J2: Jumpers
J1 Must be fitted
J2 Is not required
P1 = C.H. max. output (to be set on site)
P2 = D.H.W max output (factory set)
P3 = D.H.W temperature (factory set)

Fig. 27
29
General fault finding

Engineer Please Check

1. Gas available (check kitchen and gas cocks)
2. Electrical mains is on
3. Water pressure Central Heating System (min. 1 bar on pressure gauge)
4. Water flow domestic hot water (min. 0.5 Gal/min - 2.5 L/min) (fills a 1 pint milk bottle max. 15 seconds)
5. Is central heating pump running
6. Air intake/flare outlet free from obstacles
7. Are all service cocks open?
8. Is at least one radiator valve or bypass in Central Heating system open?

Always follow the complete General test Procedure to make sure that no fault remains unnoticed.

Never disconnect any wire without previous testing. It is possible that a fault disappears after disconnecting and rewiring the electrical connections, this fault will return.

Never pull on the wires in the terminals. To disconnect the terminal pull on the insulation cover, keeping the terminal pushed back.

The relays on the P.C.B. can be checked. The relays have transparent covers and the position of the contacts can be verified (to see if a relay is energised or not see fig. 28).

![Relay Diagram](image)

- Relay not energised
- Relay energised

Top view relay

Fig. 28
General Test + Fault Finding - Chart 1

Check carefully before starting fault finding
• Gas
• Electric mains
• Central heating pressure min. 1 bar.
• Central heating pump spins free
• Heat exchanger air vented
• Green LED 1 on facia panel alight, if not check fuse F 2 Amp. on P C B. and external fuses
• Waterflow D.H W. min. 0.5 Gallon/min. (2.5 Litres/min.)

Put selector switch on hot water only

Close Domestic Hot Water taps

Fan runs

YES

C.H. pump runs

YES

Temperature of heat exchanger very low
Frost protection thermostat closed

If temp high check wiring or replace frost thermostat

If temp very low

Disconnect Frost Thermostat 51

FAN OFF

Fan keeps running

Replace P C B.

NO

Disconnect Connector
Water Flow Switch

Fan?

NO

OFF

Fan OFF. See fault finding chart 2
General Test + Fault Finding - Chart 2

Fan OFF

Flame can be ignited with hot water tap open

---

YES

Gasflame modulates if quantity of domestic hot water flow is changed to a lower flow rate

YES

If only problem on C.H. check:
- Wiring C.H. temperature sensor (S4).
- The electrical resistance of the C.H. sensor should be:
  - 1000 Ohm - 25°C
  - 1300 Ohm - 60°C
  - 1490 Ohm - 80°C
- Time clock
- Room thermostat
- Boiler thermostat (potentiometer on front panel)
- Setting C.H. max. output on P.C.B. (P1)
  (Boiler is delivered at min. output C.H. as instructions)

NO

NO

NO

24 VAC between 61 and 60 of P.C.B.

24 VAC between 61 and 60 of P.C.B.

NO

YES

Relay 3 energised

Check:
- Wiring to modulating coil Modureg on combination gas valve
- Voltage on Modureg should be between 4-20 VDC, if higher or lower replace P.C.B.
- Gas inlet pressure

Replace Gas Valve

YES

Check automatic ignition control board

NO

Fault very, very Rare

Recheck please

Replace P.C.B.
General Test + Fault Finding - Chart 3

Fan OFF

Flame ignites with hot water tap open

YES
See Fault Finding - Chart 2

NO

Fan runs

YES
See Fault Finding Chart 4

NO

Spark available

YES

NO

Relay 3 on P.C.B. energised

YES

With fan at full speed N/C contact of air pressure switch should be closed between 67-68 of P.C.B (LED on)

NO

24 V AC between 66 and 60 of P.C.B.?

YES

Check wiring
High limit thermostat C.H.

NO

Check differential air pressures according fault finding air flow (chart 5)

24 V AC between 62 and 60 on P.C.B.

YES

NO

RL 3 not energised

Replace P.C.B.

Recheck carefully

Air pressure correct?

YES

Replace air pressure switch

NO
General Test + Fault Finding - Chart 4

Flame does not ignite

Fan runs

YES

See Fault Finding - Chart 3

NO

24 V AC between 58 and 60 of P.C.B.

YES

Relay 2 energised

NO

Check water flow switch D.H.W.

Relay 2 energised after 2 sec. (see fig. 28)

YES

Check contacts relay 2

NO

Replace P.C.B.

Fan runs

YES

See Fault Finding Chart 3

NO

Check wiring FAN

If wiring is correct

Replace FAN

NO

24 V AC between 67 and 60 of P.C.B.

YES

Replace P.C.B.

NO

Check wiring air pressure switch attention:
- With fan OFF N/C contact in air pressure switch has to be closed between 68-67 on P.C.B.

Check wiring
- D.H.W. temperature sensor 42
- C.H. temperature sensor 34
- Electrical resistance sensor C.H. and D.H.W.
  - 1000 Ohm 25°C
  - 1300 Ohm 50°C
  - 1430 Ohm 80°C

If wiring and electrical resistance of sensor are correct

Replace P.C.B.
General Test + Fault Finding - Chart 5

On top of the boiler are 3 air pressure test points
see technical information page check of air flow through boiler - Chart 6

Start boiler and check differential pressure 58 and 59: see Chart 6

Fan runs

Less than
0.55 mbar
5.50 mm WG
55 Pa
Fan too slow

More than
0.55 mbar
5.50 mm WG
55 Pa
= correct

Check if damper (31) is fully closed (remove air pressure switch)

N/O contact of air pressure switch should close between 67 - 66 on P.C.B.
If not replace air pressure switch

Check differential pressure 59 and 57: see Chart 6

Less than
1.0 mbar
10 mm WG
100 Pa
Check FAN

More than
1.0 mbar
10 mm WG
100 Pa
Check air/ flue system
General Test + Check of Air Flow through boiler - Chart 6

Top view of boiler

Pressure Test Points
57 - Fan air inlet pressure test point
58 - Fan air outlet pressure test point
59 - Flue outlet pressure test point

Fig. 29

Top View Boiler
On top of the boiler are three pressure test points with which the correct pressure and air flow of the air can be checked.

Attention - It is always necessary to measure differential pressure because the boiler is a room sealed appliance.

58 - 59 Differential pressure on damper 31 and air pressure switch 43.
59 - 57 Differential pressure on external air/flue duct
58 - 57 Differential pressure fan 16.

Checks:
1. When fan runs, differential pressure between 58 and 59 should be no less than 0.55 mbar - 5.5 mm WG - 55 Pa.
2. If less than 0.55 mbar: check differential pressure between 59 and 57. When fan runs, differential pressure between 59 and 57 should be to no more than 1.0 mbar - 10 mm WG - 100 Pa. If more check flue ducting.
3. If differential pressure 58 and 59 less than 0.55 mbar and differential pressure 59 and 57 less than 1.0 mbar check air pressure damper 31 and fan 16.
Replacement of Parts

1.0 INITIAL PROCEDURE

Before work commences ensure that:

a) The boiler is cold, electricity supply is isolated, and the gas supply is turned off at the inlet of the boiler (fig. 1).

b) For replacement of parts where water connections are broken, it will be necessary to isolate and drain either or both the central heating or domestic hot water circuits of the boiler only. The cold water mains inlet is isolated at the inlet cock (fig. 1). The D.H.W. is drained via drain cap (fig. 57). The C.H. flow and return cocks are turned off at the isolation cocks (fig. 1). The C.H. is drained via the pressure relief valve (twist about 1/2 of a turn)

Important

i) Upon completion of the work the following (details of which are included in the commissioning section):
   Should be checked:

   l) Gas soundness of all joints.
   l) Water soundness of all joints.
   l) The electricity supply.
   l) The pressure of the sealed system and top up where necessary

d) Replace all components in reverse order, observing any special notes given

e) Removal of Outer Casing

Note - It may not be necessary to remove all the outer casing. Refer to individual sections for the extent to which the outer case needs to be removed.

f) Front Panel
   Grip on both sides and lift away from the main boiler assembly.

g) Base Plate
   Remove the four fixing screws (fig. 16).

h) Side Panels
   For each panel, remove two fixing screws at base of appliance and single fixing screw at top of appliance (fig. 30).
   Also remove hinged control panel cover.

Note - The panels are located in keyhole slots, push panels upwards and pull away. The left hand panel also has the heat protection shield secured by the fixing screw (fig. 14).

i) Removal of Combustion Chamber Outer Cover
   Remove the five combustion chamber outer cover fixing screws and undo four buckle clips (fig. 30) to remove cover.

j) To Remove Control Panel
   Hinge control panel cover downwards.
   The two control panel securing screws can now be removed (fig. 30), remove C.H. - D.H.W. thermostat knobs, hinge control panel forwards and disengage from bottom lugs, control panel can now be removed.

k) To lower control box frame
   Remove screw securing gas control valve to frame.
   Remove the base plate (g) above.
   Remove the two screws securing the frame to the back panel.
Fig. 30
Details GAS Valve

Key
a. 6,3 mm AMP terminals
1. Cover
2. Min. burner pressure setting
3. Shaft
4. Max. burner pressure setting
47. Modulating regulator (Modureg)

Fig. 31

Details combustion chamber

20. Burner assembly
22. Burner
28. Flue collector from heat exchanger
81. Ignition electrode
82. Flame sensing electrode

Fig. 32
2.0 COLD WATER FLOW SWITCH (Domestic Hot Water) AND FILTER

a) Refer to section 1, items a, b, c, d, f and g (drain D.H.W only fig 37).
b) Undo the flow switch unions and carefully lower the flow switch taking care not to lose either the (three) sealing washers, filter or flow restrictor.
c) Disconnect the electrical connections to the flow switch.
d) Re-assemble in reverse order, ensuring that the filter, flow restrictor and sealing washers are in the correct position (fig. 38). The polarity for the electrical wiring is immaterial.
3.0 HONEYWELL GAS VALVE (fig 31)
   a) Refer to Section 1, items a, c, d, f, g, h (left hand side panel) and j
   b) Disconnect the four electrical connections from the top of the valve
   c) Disconnect modulating balance tube by removing the fixing screw, and gently pull off from the front of the valve.
   d) Disconnect the gas supply to the gas valve at the inlet union.
   e) Remove the screw securing the base of the gas valve to the control box frame of the appliance.
   f) Remove the four Allen screw which secure the inlet supply pipe to the gas valve.
      (Take care not to lose the sealing washer)
   g) Undo the union which is on the burner supply pipe and withdraw gas valve towards front
   h) Re-assemble in reverse order. Re-connect electrical connection in accordance with the wiring diagram (fig. 25).
   i) Fully test the operation of the new gas valve and reset burner pressures as prescribed (see commissioning)

4.0 P.C.B.
   a) Refer to section 1, items a, c, d, f and j.
   b) Unscrew two fixing screws on the P.C.B. top cover plate, lift and disconnect all connectors from P.C.B. (fig. 39)
   c) Unscrew upper fixing screws from P.C.B
   d) Gently pull P.C.B. off mounting studs and remove.
   e) Re-assemble in reverse order (Refer to wiring diagram fig. 25).
   f) Range rate the boiler C.H. and check the operation of the controls (See commissioning)
5.0 CENTRAL HEATING LIMIT THERMOSTAT, OR FROST THERMOSTAT, OR OVERHEAT CUT OFF THERMOSTAT OR D.H.W. LIMIT THERMOSTAT
a) Refer to Section 1, items a, d, f and i
b) Refer to fig. 2 to identify the location of respective thermostat
c) Remove two spring clips (with a pair of pliers)
d) Disconnect electrical connections to the thermostat
e) Re-assemble in reverse order (Polarity Immaterial). Heat sink compound, must be used

3.0 D.H.W. TEMPERATURE SENSOR OR CENTRAL HEATING TEMPERATURE SENSOR
a) Refer to section 1, items a, b, c, d, f, g, h (left hand side panel) and k
b) Identify the sensor from fig. 2
c) Disconnect the electrical connections to the sensor.
d) Unscrew the temperature sensor.
e) Re-assemble in reverse order (Polarity Immaterial).

7.0 PRESSURE RELIEF VALVE
a) Refer to section 1, items a, b, (central heating) c, d, and g
Note - If this valve is not working correctly then the water can only be drained from the appliance by, removing the pressure relief valve.
b) Release the outlet union to the valve and undo the valve union connection, taking care not to lose the sealing washers
c) Remove the pressure relief valve outlet fitting
d) Re-assemble in reverse order, and check the operation of new valve.

8.0 PUMP
a) Refer to section 1, items a, b (central heating), c, d, f, g, h (right hand side panel), j and k.
b) Loosen the two pump union connections
c) Remove electrical cover on pump, one screw (fig 40) (Rotate pump to remove cover)
d) Disconnect the live, neutral and earth connection.
e) Release the cable retaining gland and pull the cable clear.
f) Disconnect the two pump union connections. Remove pump (Retain washers if not re-newing).
g) Re-assemble in reverse order (fig 40)
Note - Ensure the arrow indicating the direction of flow, on the pump housing is pointing upwards, and the speed setting is at 3.
9.0 AUTOMATIC AIR VENT

a) Refer to Section 1, items a, b (central heating), c, d, f, g, h, (right hand side panel) and k.
b) Loosen the pump union connections and swivel the pump to the right.
c) Unscrew the automatic air vent (fig. 2, item 35)
d) Re-assemble in reverse order ensuring the «O» ring is fitted (fig. 41) and that the venting cap is loose

Replace pump ensuring that the arrow indicating flow points upwards.

Fig. 40

Fig. 41
10.0 PRESSURE/TEMPERATURE GAUGE
a) Refer to Section 1, items a, b, (central heating), c, d, f, g and j.
b) Remove the shim then the temperature sensing phial from its pocket (fig. 37).
c) Unscrew the pressure sensor from its housing (fig. 37). (Access from below).
d) Unscrew the knurled nut from the rear of the gauge, and remove the gauge forwards.

11.0 D.H.W. EXPANSION VESSEL (OPTIONAL)
a) Refer to section 1, items a, b (D.H.W.), c, d, f and g.
b) Unscrew the expansion vessel (fig. 37). (Take care not to lose the sealing washer).
c) Re-assemble in reverse order, ensure the sealing washer is in place.

12.0 REMOVAL OF C.H. SELECTOR SWITCH
a) Refer to section 1, items a, c, d, f and j.
b) Disconnect the electrical connections to the selector switch (fig. 2).
c) Pull off selector switch knob.
d) Unscrew the two fixing screws exposed when the knob is removed.
e) Re-assemble in reverse order (refer to fig. 42 for wiring). Check the operation of the new switch.

---

Fig. 42
13.0 REMOVAL OF THE CLOCK

a) Refer to section 1, items a, c, d, f and j.
b) Disconnect the electrical connections to the time clock.
c) Remove the time clock from the control panel (fig. 43)
d) Re-assemble in reverse order (refer to fig. 43 for replacement of the time clock).
14.0 REMOVAL OF FAULT DIAGNOSTIC/TEMPERATURE CONTROL
a) Refer to Section 1, items a, c, d, f, and i.
b) Remove P.C.B. top cover by unscrewing the two fixing screws
c) Pull control box front cover forward
d) Disconnect electrical connections from fault diagnostic control panel
e) Remove retaining nuts from the C.H. and D.H.W thermostat spindle, remove fault diagnostic/temperature control panel
f) Re-assemble in reverse order.

15.0 AIR PRESSURE SWITCH
a) Refer to Section 1, items a, c, d, f, and i.
b) Remove the five screw securing the air collection plate (fig. 45), and withdraw the plate complete with the air pressure switch (Take care not to lose «P» clip).
c) Disconnect electrical leads to air pressure switch.
d) Remove pressure sensing tube.
e) Remove the pressure switch, 2 screws.
f) Re-assemble in reverse order (refer to fig. 46 for wiring).
16.0 REMOVAL AND RE-PRESSURISING OF C.H. EXPANSION VESSEL

Note - If there is less than 500 mm clearance above the boiler or if the boiler has a rear flue outlet then removal of the expansion vessel can only be achieved by first removing the boiler from the wall.

Note - For rear exit flues it is not recommended that the flue and air duct be removed from the wall. Either remove the boiler leaving the ducts in place or insert an equivalent vessel in the central heating return to the boiler.

a) Removal of expansion vessel.
b) Refer to section 1, items a, b and c (Drain C.H. side of boiler).
c) Remove the two screws from the expansion vessel securing plate, (fig. 47) which can be found at the top back of the boiler.
d) Undo the compression fitting on the top of the expansion vessel (fig. 47).
e) Remove the expansion vessel.
f) Re-assemble in reverse order.

b) Re-pressuring of expansion vessel. (Charge pressure 0.8 - 1.0 bar).
c) Close the C.H. flow and return cocks on boiler and drain the boiler (fig. 20).
d) The schrader valve is positioned on the top right hand side of the expansion vessel, behind the inlet connection.
e) Re-open C.H. flow and return cocks and re-charge the system to between 1 & 1.5 bar and vent the boiler and radiators.

Fig. 47
Annual Servicing Instructions

Certain procedures may not be necessary - check the operation of the thermostat and main burner before servicing, as well as the domestic hot water flow rates. Note that the heat exchanger must always be cleaned.

Before work commences ensure that:

a) Boiler is cold.
b) Electricity supply to the boiler is isolated.
c) Gas supply to the boiler is isolated, at the cock on the inlet manifold.

1.0 TO REMOVE THE BOILER OUTER CASING

1.1 Front panel - Grip firmly on both sides and lift away from the main boiler assembly.
1.2 Base Plate - Unscrew the four screws which secure the base plate (fig. 30)

Note - The panels are located in keyhole slots, push panel upwards and pull away.

1.3 Combustion Chamber Outer Cover - Remove the five combustion chamber outer cover screws (fig. 30) and unlatch the four buckle clips and remove cover.

2.0 REMOVAL OF PARTS FOR SERVICING

2.1 Pull electrode H T lead from electrode.
2.2 Unscrew burner inlet union connection.
2.3 Remove the combustion chamber front panel by unscrewing the five fixing screws (fig. 30)
2.4 Remove the two screws securing the burner assembly box.
2.5 Remove the main burner assembly box complete.
2.6 Remove the three screws securing the burner air guide plate.
2.7 Remove the two fixing screws securing the injector rail and remove the injector rail complete with burners.
2.8 Pull burners off injectors.
2.9 Clean the burners with a brush.
2.10 Inspect the main injectors and clean if necessary.
2.11 Remove the spring clip securing the flue pipe to the flue hood and push the flue pipe upwards and latch it in the flue collection box to keep it out of the way.
2.12 Pull out the two fixing rods from the side of the flue hood. Gently lift the flue hood out.
2.13 Clean the heat exchanger with a suitable brush, and the bar provided (the bar is located on the small heat exchanger air vent pipe, which is situated on the right hand side of the boiler, and is accessible when the combustion chamber outer cover has been removed).
2.14 If the domestic hot water rate is low, from underneath the appliance turn off the domestic water cocks and drain the domestic hot water by opening the drain plug (fig. 37).

From underneath the appliance undo the two unions and remove the flow switch valve (fig. 38) far enough to gain access to the filter and to the flow restrictor. (Take care not to lose the sealing washer at either connection of the flow control valve). Clean or replace the filter if necessary.

3.0

3.1 Re-assemble the appliance in reverse order. Take care that flow switch valve filter and restrictor are fitted correctly (fig. 38).

Note - Always check for gas and water soundness of any joints broken during servicing.
### Spare Parts List

<table>
<thead>
<tr>
<th>Item No.</th>
<th>G.C. Part No.</th>
<th>Makers Part No.</th>
<th>No. Off</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>366918</td>
<td>800150</td>
<td>1</td>
<td>C.H. safety valve</td>
</tr>
<tr>
<td>16</td>
<td>372310</td>
<td>802100</td>
<td>1</td>
<td>Complete tap</td>
</tr>
<tr>
<td>21</td>
<td>372176</td>
<td>816850</td>
<td>4</td>
<td>Main injector (Natural Gas)</td>
</tr>
<tr>
<td>21</td>
<td>-</td>
<td>816870</td>
<td>4</td>
<td>Main injector (L.P.G.)</td>
</tr>
<tr>
<td>32</td>
<td>366214</td>
<td>800600</td>
<td>1</td>
<td>Central heating pump</td>
</tr>
<tr>
<td>34</td>
<td>366819</td>
<td>800310</td>
<td>2</td>
<td>Temperature sensor</td>
</tr>
<tr>
<td>36</td>
<td>364246</td>
<td>801160</td>
<td>1</td>
<td>Automatic air vent</td>
</tr>
<tr>
<td>38</td>
<td>379025</td>
<td>800120</td>
<td>1</td>
<td>Cold water flow switch (paddle type)</td>
</tr>
<tr>
<td>39</td>
<td>366829</td>
<td>801220</td>
<td>1</td>
<td>Cold water flow (limit 10 l/min)</td>
</tr>
<tr>
<td>42</td>
<td>366918</td>
<td>802010</td>
<td>2</td>
<td>Temperature sensor</td>
</tr>
<tr>
<td>43</td>
<td>361997</td>
<td>800140</td>
<td>1</td>
<td>Air pressure switch</td>
</tr>
<tr>
<td>44</td>
<td>-</td>
<td>802500</td>
<td>1</td>
<td>Combination gas valve</td>
</tr>
<tr>
<td>49</td>
<td>366915</td>
<td>801240</td>
<td>1</td>
<td>Overheat cut-off thermostat</td>
</tr>
<tr>
<td>50</td>
<td>366977</td>
<td>800160</td>
<td>1</td>
<td>Heat exchanger limit thermostat</td>
</tr>
<tr>
<td>51</td>
<td>366828</td>
<td>800180</td>
<td>1</td>
<td>Heat exchanger frost thermostat</td>
</tr>
<tr>
<td>52</td>
<td>366576</td>
<td>801000</td>
<td>1</td>
<td>D.W. limit thermostat</td>
</tr>
<tr>
<td>51</td>
<td>372320</td>
<td>801230</td>
<td>1</td>
<td>C.H. selector switch</td>
</tr>
<tr>
<td>52</td>
<td>372811</td>
<td>612900</td>
<td>1</td>
<td>Time clock</td>
</tr>
<tr>
<td>64</td>
<td>366880</td>
<td>800300</td>
<td>1</td>
<td>C.H. temperature/pressure gauge</td>
</tr>
<tr>
<td>81</td>
<td>-</td>
<td>801440</td>
<td>1</td>
<td>Ignition electrode</td>
</tr>
<tr>
<td>82</td>
<td>-</td>
<td>801430</td>
<td>1</td>
<td>Flame sensing electrode</td>
</tr>
<tr>
<td>83</td>
<td>-</td>
<td>502650</td>
<td>1</td>
<td>Ignition board Honeywell</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>803110</td>
<td>1</td>
<td>Fault diagnostic/temperature control panel</td>
</tr>
<tr>
<td>101</td>
<td>-</td>
<td>803100</td>
<td>1</td>
<td>P.C.B. VMF 1S</td>
</tr>
<tr>
<td>113</td>
<td>-</td>
<td>829380</td>
<td>1</td>
<td>Special two pipe flue/air adapter</td>
</tr>
</tbody>
</table>

---

**12345678**

---
Domestic Hot Water Performance

Fig. 1 - D.H.W. Pressure Drop VS. flow
- Standard with cold water Flow Restricter
- Cold Water Flow Restricter Removed

Fig. 2 - D.H.W. temperature VS. flow
A = Cold Water 15°C
B = Cold Water 5°C

Modulating regulator (Modureg) of gas valve
1. Cap (with tube 71)
2. Shaft
3. Adjustment screw for max pressure setting
4. Adjustment screw for min pressure setting
5. 6.3 mm AMP terminals
6. "O" ring
7. Modulating balance tube

If necessary replace complete MODUREG

<table>
<thead>
<tr>
<th>Pressure settings</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mbar</td>
<td>Inch WG</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>2.5</td>
<td>1.0</td>
</tr>
<tr>
<td>L.P.G.</td>
<td>7.5</td>
<td>3.0</td>
</tr>
</tbody>
</table>
**Key**

16 Fan
32 Central heating pump
34 C.H. flow temperature sensor
38 Cold water flow switch
42 D.H.W. temperature sensor
43 Air pressure switch
46 Operator gas valve
47 Modulating regulator (MODEUREG) gas valve
49 Overheat cut-off thermostat
50 Heat exchanger limit thermostat
51 Heat exchanger frost thermostat
52 D.H.W. limit thermostat
61 C.H. selector switch
62 Time clock
63 C.H. boiler thermostat
64 Control box with P.C.B.
72 Room thermostat (not fitted)
80 Five pole terminal 240V + 24V
81 Spark electrode
82 Flame sensing electrode
83 Automatic ignition control panel
84 1. gas valve operator
85 2. gas valve operator
86 Automatic control reset knob
100 Fault diagnostic/temperature control panel
101 P.C.B.
157 D.H.W. thermostat

**NOTE:**

The transformer on the P.C.B. has a built-in overheat protection. If this is open, all LEDs will be off but the C.H. pump (32) will run switch off the boiler for at least 20 minutes.

X4

**DONT CONNECT ANYTHING TO THIS CONNECTOR, THIS COULD DAMAGE THE P.C.B.**

X3

<table>
<thead>
<tr>
<th>TEST CONNECTOR X3</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>04 TEST</td>
<td>05</td>
<td>06 MODUREG MAX VOLTAGE</td>
<td>07</td>
</tr>
</tbody>
</table>

**SHORT CIRCUIT 04-05 AND SHORT CIRCUIT 06-07:**
- Boiler will start for C.H.
- Waiting time is excluded
- P1 and P2 OUT OF OPERATION
- CHECK/SET MECHANICAL MAXIMUM ON MODUREG (47)

**SHORT CIRCUIT 04-05 ONLY:**
- Boiler starts for C.H.
- Waiting time is excluded
- Max burner pressure C.H. can be checked/set with P1
General Notes - For use on the OPTIMA 800 fitted with VMF6.1 Printed Circuit Board
*The central heating pump (32) will run to disperse heat if the temperature at the heat exchanger limit thermostat (50) is too high
*The frost thermostat (51) will switch on the boiler for central heating if the temperature is too low
*Fuse on P.C.B.: 2 Amp.

<table>
<thead>
<tr>
<th>LED n°</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mains on/off voltage on</td>
</tr>
<tr>
<td>2</td>
<td>Domestic hot water flow switch (38) on</td>
</tr>
<tr>
<td>3</td>
<td>Central heating room thermostat (72) / clock (62) calling</td>
</tr>
<tr>
<td>4</td>
<td>Sensor (34) or (42) calling for heat</td>
</tr>
<tr>
<td>5</td>
<td>Central heating waiting time, max. 3 minutes delay following shut off</td>
</tr>
<tr>
<td>6</td>
<td>Boilerstat (63), Clock (52), Roomstat (72) or use of Hot Water</td>
</tr>
<tr>
<td>7</td>
<td>Demand for heat - fan relay (RL2) will be energised</td>
</tr>
<tr>
<td>8</td>
<td>Air pressure switch (43) on, air flow checked</td>
</tr>
<tr>
<td>9</td>
<td>Automatic ignition board (83) will be energised</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jumpers J1 - J2</th>
<th>Fitted</th>
<th>Not Fitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>Precharge time before ignition = 0 second</td>
<td>Precharge time before ignition = 20 seconds</td>
</tr>
<tr>
<td>J2</td>
<td>Fan control High &amp; Low speed</td>
<td>Fan control High speed only/off</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resistance of Central Heating or Hot Water sensors (34) + (42)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10°C C 890 ohm</td>
</tr>
</tbody>
</table>

**Check operation using LED's as a fault finding guide. First check section A, then B, then C, then D.**

- 0 = LED off
- 1 = LED on
- x = LED either on/off is not important

<table>
<thead>
<tr>
<th>LED</th>
<th>OK</th>
<th>FAULT</th>
<th>Domestic Hot water tap open (Flow rate greater than 2.5 l/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>No mains electricity switches off/fuse blown.</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>D.H.W. flow switch (38) not operating.</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td>Not required for D.H.W.</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>D.H.W. sensor (42) not connected or D.H.W. temperature too high</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>Waiting time operating; replace P.C.B.</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>Short circuit on D.H.W. sensor (42) or resistance lower than 500 Ohm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LED</th>
<th>OK</th>
<th>FAULT</th>
<th>CENTRAL HEATING ON Room stat (72) at Max. HW tap closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>No mains electricity switches off/fuse blown.</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>Hot water tap open - D.H.W. flow switch (38) contact closed</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>Room stat (72) or clock (62) not calling for heat</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>Central heating sensor (34) not connected or</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>Boiler temperature too high or</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>Boiler thermostat (61) below CH temperature</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>Waiting time still operating (max. 3 minutes)</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1</td>
<td>CH sensor (54) short circuit or resistance lower than 500 ohm</td>
</tr>
</tbody>
</table>

**General test for D.H.W. and central heating (First check A and B above)**

<table>
<thead>
<tr>
<th>LED/REL</th>
<th>OK</th>
<th>FAULT</th>
<th>POSSIBLE CAUSE OF FAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL1/RL2 energised</td>
<td>not energised</td>
<td>Air pressure switch (43) not in NC position or miswired:</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>- check wiring</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>- fan (15) at low speed remove jumper J2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- fan (16) not running at full speed or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- air flow too low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- air pressure switch (43) faulty</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- CH limit thermostat (50) open circuit (pumps will run)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- D.H.W limit thermostat (52) open circuit</td>
</tr>
</tbody>
</table>

**Ignition of burner (Automatic Ignition)**

- Fan (15) should run at full speed (open hot tap or set controls so boiler is calling for heat) |
- Check first A, B and C above (LED 8 is ON) |
- Check if Jumper J1 not is fitted |

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Note:** If RL1 is not energised, the Central Heating pump will run.
Special Installation Possibilities: Two-pipe air intake/flue outlet

Special Air Intake/Flue Outlet

The standard Flue/air intake hood on top of the boiler can be replaced by a special two pipe flue adapter.

For details see separate instructions; "Optional flue systems"
Phone numbers:

installer

Service Engineer

BECAUSE OF OUR CONSTANT ENDEAVOUR FOR IMPROVEMENT DETAILS MAY VARY SLIGHTLY FROM THOSE QUOTED IN THESE INSTRUCTIONS.

FOR SERVICE INFORMATION OR HELP PLEASE TELEPHONE
08707 282 885
Férroli Ltd, Lichfield Road, Branston Ind Estate,
Burton Upon Trent, Staffordshire DE14 3HD