OPTIMAX HE 25 S

wall-mounted gas fired,
pre-mix
condensing system boiler

Seasonal Efficiency (SEDBUK) band A

INSTRUCTIONS FOR USE INSTALLATION AND MAINTENANCE FOR THE UNITED KINGDOM AND EIRE

G.C. n° 41-267-25
IMPORTANT

• Your “benchmark” Installation, Commissioning and Service Record Log Book is enclosed in the last pages of this manual. “This record must be completed and left with the end user”. Ferroli is a member of the Benchmark initiative and fully supports the aims of the programme. Benchmark has been introduced to improve the standards of installation and commissioning of central heating systems in the UK and to encourage the regular servicing of all central heating systems to ensure safety and efficiency. Please see installation and servicing guidelines. For EIRE (Southern Ireland) it is necessary to complete a “Declaration of Conformity” to indicate compliance to I.S. 813. An example of this is given in the current edition of I.S. 813. In addition it is necessary to complete the “Benchmark” logbook.

• "Ferroli declare that no substances harmful to health are contained in the appliance or used during the appliance manufacture”.

This symbol indicates “Caution” and is placed next to all safety information. Strictly follow these instructions in order to avoid danger and damage to persons, or property.

This symbols calls attention to a note or important information, please read thoroughly.

• Read the warnings given in this manual thoroughly. They provide important information for safe installation, use and maintenance

• By law the instruction manual must be left with the end user.

• If the appliance is sold or transferred to another owner or if the owner moves, leaving the appliance behind, always ensure that the manual is kept with the appliance for consultation by the new owner and/or installer.

• Incorrect installation or poor maintenance absolves the manufacturer from all liability for damage to people or property.

• Installation and maintenance must be carried out in conformity with current legislation, according to the manufacturer’s instructions and by qualified personnel.

• Before service or maintenance work is carried out, isolate the appliance from the mains electricity supply.

• In the event of malfunction or faulty operation, isolate the appliance. Do not attempt to repair or carry out any other operation on the appliance directly. Contact qualified personnel only.

• Repairs or the replacement of components must be carried out exclusively by qualified personnel using original spare parts only. Failure to respect the above may compromise the safety of the appliance.

• To guarantee efficient operation, the appliance must be serviced once a year by a corgi registered engineer.

• The appliance may not be used for purposes other than those for which it was explicitly designed. Any other use is considered improper and therefore dangerous.

• Incorrect installation and use or failure to follow the instructions provided by the manufacturer absolves the manufacturer from all liability for damage.

• After unpacking, check that the contents are complete and undamaged.

• Keep the packaging out of reach of children as it is potentially hazardous.

• To clean external parts, use a damp cloth moistened with soapy water if necessary. Avoid using abrasive cleaning products and solvents.

Declaration of conformity

Manufacturer: FERROLI S.p.A.
Address: Via Ritonda 78/a 37047 San Bonifacio VR Italy
declares that this unit complies with the following EU directives:

• Gas Appliance Directive 90/396
• Efficiency Directive 92/42
• Low Voltage Directive 73/23 (amended by 93/68)
• Electromagnetic Compatibility Directive 89/336 (amended by 93/68)

President and Legal Representative

Cav. del lavoro

Daniele Ferroli
1. OPERATING INSTRUCTIONS

1.1 Introduction

Dear Customer,

Thank you for choosing the OPTIMAX HE 25 S, a FERROLI wall-mounted boiler of the latest generation, featuring advanced design and cutting-edge technology.

OPTIMAX HE 25 S is a high-efficiency condensing pre-mix appliance for heating with extremely low emissions, running on natural gas or LPG.

The boiler consists of an aluminium laminar heat exchanger providing effective condensation of the water vapour contained in the flue gases, permitting extremely high efficiency.

Above the heat exchanger, in the boiler, there is a pre-mix burner, with a large ceramic surface, equipped with electronic ignition and ionization flame control, which achieves extremely low emissions while ensuring high reliability and long life operation.

The boiler is totally room sealed from the installation room: the air needed for combustion is drawn from outside. The boiler also includes a modulating speed fan, modulating gas valve, pump, expansion vessel, safety valve, temperature sensors, a safety thermostat and a low water pressure sensor.

Thanks to the microprocessor control and adjustment system with advanced self-diagnosis, unit operation is for the most part automatic. The power for heating is automatically governed by the control system.

The user only has to set the temperature desired inside the home by means of a room thermostat and appliance temperature control. The adjustment and control system will provide optimum operation throughout the year.

The display continuously provides information on the unit’s operating status and it is easily possible to obtain additional information on the sensor temperatures, set-points, etc. or configure them. Any operating problems associated with the boiler or system is immediately signalled by the display and, if possible, corrected automatically.
1.2 Control panel

fig. 1

1 = Domestic Hot Water temperature setpoint decreasing push button (not used)
2 = Domestic Hot Water temperature setpoint increasing push button (not used)
3 = Central Heating water temperature setpoint decreasing push button
4 = Central Heating water temperature setpoint increasing push button
5 = Display LCD
6 = Reset
7 = On-Off push button
8 = Domestic Hot Water symbol
11 = Multi-function indication
12 = Degrees indication
13 = Central Heating mode operation
14 = Central Heating symbol
15 = Burner on and actual load indication

Indication during boiler operation

Demand mode

The Boiler heat demand (generated by the Programmer, room thermostat and cylinder thermostat) is indicated by the flashing of the Hot Air symbol over the radiator (part. 13 and 14 – fig. 1). The display indicates the actual System water temperature (part. 11 – fig. 1).
1.3 Turning ON and OFF

Without main power supply

To avoid damage caused by freezing during long shutdowns in winter, it is advisable to drain all water from the system.

Ignition
Ensure the power is on to the appliance.

- For the first 120 seconds, the display shows FH that identifies the Air purge function.
- During the first 5 seconds, the display shows the software version of the pcb.
- Open the gas cock on the boiler and purge the air from the pipework upstream of the gas valve.
- When the FH disappears, the boiler is ready to function automatically whenever the external controls are calling for heat.

Turning off
Press the (part. 7 - fig. 1) for 5 seconds.
When the boiler is turned off with this key, the p.c.b is still powered, heating operation is disabled and the display is off however the frost protection will still be active.

To totally isolate close the gas cock ahead of the boiler and disconnect electrical power.

To avoid damage caused by freezing during long shutdowns in winter, it is advisable to drain all water from the system.

To turn the boiler on again, press \(\text{part.7 - fig.1} \) for 5 seconds.

If there is no heat demand, the display shows the actual water pressure (bar/10).

The boiler is ready to function automatically whenever the external controls are calling for heat.

1.4 Adjustments

Heating temperature setting

To set the system flow temperature, use the CH push buttons \(\text{Part. 3 and 4 – fig. 1} \). It can be varied from a minimum of 20°C to a maximum of 90°C.

Room temperature adjustment (using a room thermostat)

Using the room thermostat, set the temperature desired in the rooms. Controlled by the room thermostat, the boiler lights and heats the system water to the system delivery setpoint temperature. The burner shuts down when the desired temperature in the room is reached.

A room thermostat and programmer are a mandatory requirement (Building regulations Doc ‘L’ 2002).
1.5 Maintenance

It is strongly recommended to carry out annual maintenance of the boiler and heating system. Please refer to the “maintenance” section in this manual.

The casing, the control panel and the aesthetic parts of the boiler can be cleaned using a soft and damp cloth, do not use abrasives or solvents.

1.6 Faults

In the unlikely event of an operating problem, or component failure, the display flashes and a fault identification code appears.

The boiler is equipped with an advanced self-diagnosis system that signals any faults on the display.

Some faults (“A” indication) cause a boiler shutdown. In this case, operation must be reset manually by pressing the \(\text{ON/OFF} \) (Part. 6 – fig. 1) for 1 second.

Other faults (“F” indication) cause temporary shutdowns that are automatically reset as soon as the value causing the fault comes back within the boiler’s normal working range.

Listed below are some anomalies that can be caused by simple, user-solvable problems.

If the problem remains after two attempts at resetting, contact the Ferroli Service Centre.

For other faults, refer to section 3.4 “Troubleshooting”.

<table>
<thead>
<tr>
<th>Fault</th>
<th>Cure</th>
</tr>
</thead>
</table>
| No burner ignition | Make sure that the gas cocks ahead of the boiler and on the meter are open.
 | Press the RESET button (for 1 second).
 | In case of repeated shutdowns, contact the Ferroli Service Department. |
| Low system pressure | Fill the ‘system to 1-1.5 bar. |

Before calling a Ferroli service engineer, check that the problem is not due to there being no gas or electricity, or low system pressure.
2. INSTALLATION

2.1 General Instructions

⚠️ This device must only be used for the purpose for which it is specially designed. This unit is
designed to heat water to a temperature below boiling point and must be connected to a heating
system and/or a water supply system for domestic use, compatible with its performance,
characteristics and its heating capacity. Any other use is considered improper.

BOILER INSTALLATION MUST ONLY BE PERFORMED BY QUALIFIED PERSONNEL, IN ACCORDANCE
WITH ALL THE INSTRUCTIONS GIVEN IN THIS TECHNICAL MANUAL, THE PROVISIONS OF CURRENT
LAW, THE RECOMMENDATION OF BS STANDARDS, ANY LOCAL REGULATIONS AND THE RULES OF
COMPETENT WORKMANSHP.

IN IE, THE INSTALLATION MUST BE CARRIED OUT BY A COMPETENT PERSON IN ACCORDANCE
WITH THE CURRENT EDITION OF I.S. 813 “DOMESTIC GAS INSTALLATIONS”, THE CURRENT BUILD-
ING REGULATIONS AND REFERENCE SHOULD BE MADE TO THE CURRENT ETCI RULES FOR ELEC-
TRICAL INSTALLATIONS.

Incorrect installation can cause damage or physical injury for which the manufacturer declines any re-
sponsibility.

This appliance must be installed strictly in accordance with these instructions and
regulations:

The Gas Safety Regulations (Installations & Use).
The Local Building Regulations.
The Building Regulations (Part L).
The Buildings Standards (Scotland - Consolidated) Regulations.

British Standards Codes of Practice:
B.S. 5440 Part 1 Flues
B.S. 5440 Part 2 Air supply
B.S. 5449 FORCED CIRCULATION HOT WATER SYSTEMS
B.S. 6798 INSTALLATION OF GAS FIRED HOT WATER BOILERS
B.S. 6891 GAS INSTALLATIONS
B.S. 7671 IEE WIRING REGULATIONS
B.S. 4814 SPECIFICATION FOR EXPANSION VESSELS
B.S. 5482 INSTALLATION OF LPG
B.S. 7593 TREATMENT OF WATER IN DOMESTIC HOT WATER CENTRAL HEATING SYSTEMS
B.S. 5546 INSTALLATION OF HOT WATER SUPPLIES FOR DOMESTIC PURPOSES
I.S. 813 DOMESTIC GAS INSTALLATIONS (EIRE ONLY)

Model Water Bye Laws
B.S. 5955-8 PLASTIC PIPEWORK INSTALLATION

For Northern Ireland the rules in force apply
2.2 Boiler location

The unit’s combustion chamber is sealed off from the installation room and therefore requires no compartment ventilation.

The installation room must be sufficiently well ventilated to prevent any dangerous conditions from forming in the event of even slight gas leakage. This safety standard is required by the EEC Directive no. 90/396 for all gas units, including those with a so-called sealed chamber.

Therefore the place of installation must be free of dust, flammable materials or objects or corrosive gases. The room must be dry and not subject to freezing.

The boiler is designed to be installed on a solid wall. The wall fixing must ensure a stable and effective support for the appliance, using the bracket and fixings supplied.

If the unit is enclosed in a cupboard or mounted alongside, there must be space for normal maintenance work. Fig. 9 and tab. 1 give the minimum clearances to leave around the unit.

Safe Handling of Substances

Care should be taken when handling the boiler insulation panels, which can cause irritation to the skin. No asbestos, mercury or CFCs are included in any part of the boiler.

Product Handling Advice

When handling or lifting always use safe techniques - keep your back straight, bend your knees, don’t twist - move your feet, avoid bending forwards and sideways and keep the load as close to your body as possible.

Where possible transport the boiler using a sack truck or other suitable trolley.

Always grip the boiler firmly, and before lifting feel where the weight is concentrated to establish the centre of gravity, repositioning yourself as necessary.
2.3 Boiler water connections

The heating capacity of the unit should be previously established by calculating the building’s heat requirement according to current regulations. For good operation and long life of the boiler, the plumbing system must be well proportioned and always complete with all those accessories that guarantee regular operation and running, room thermostat, trv’s etc. The flow and return must be a minimum diameter of 22mm for the first 3 metres from the appliance.

If the flow and return pipes follow a path where air pockets could form in certain places, it is essential to install vent valves at these points. Also, install type “A” drain cock device at the lowest points in the system to allow complete draining.

The temperature differential between the flow manifold and the return to the boiler should not exceed 20° C.

A minimum flow of 6 litres/min is required through the heat exchanger, calibrated on site. An automatic by-pass is fitted to the boiler which will provide this flow rate in most circumstances.

⚠️ Do not use the water system pipes to earth electrical appliances.

Before installation, carefully flush all the pipes of the heating system to remove residues or impurities that could affect the unit’s operation (BS 7593 Building regs Doc L).

Make the connections to the appliance as shown in fig. 10.

Key

1. System flow (22 mm with isolation valve fitted)
2. Gas inlet (22 mm with isolation valve fitted)
3. System return - 22 mm with isolation valve fitted (c/w filter)
4. Pressure Relief Valve
5. Condense outlet

It is essential to install the isolation valves supplied between the boiler and heating system, allowing the boiler to be isolated from the system if necessary.

⚠️ The safety valve outlet must be connected to a 15mm diameter copper pipe, with a continual fall from the boiler to allow system water out onto the ground in the event of over-pressure in the heating circuit. If this is not done, and the drain valve trips and floods the room, the boiler manufacturer is not to be held responsible. The outlet should face back against the outer brickwork or building face to prevent harm or injury from hot water discharging in the event of an over-pressurising system.

Make the boiler connection in such a way that its internal pipes are free of stress.
The isolation valve kit shown in Fig. 11 is supplied as standard.

Make Up Water
Provision must be made for replacing water lost from the sealed system. Reference should be made to BS6798, for methods of filling and making up sealed systems. There must be no direct connection between the boiler's central heating system and the mains water supply. The use of mains water to charge and pressurise the system directly, is conditional upon the Local Water Byelaws. Again any such connection must be disconnected after use. Ensure the filling point is on the return pipe to the boiler.

Attention - is drawn to the Model Water Byelaws.

Key
1. C.H. filling valve.
2. Temporary connection.
3. Cold water supply valve.
4. Double check valve.

Fig. 11

Fig. 12
2.5 Electrical Connections

The unit must be installed in conformity with current national and local regulations.

Connection to the electrical Supply

The boiler must be connected to a single-phase, 230 Volt-50 Hz electric supply.

The unit’s electrical safety is only guaranteed when correctly connected to an efficient earthing system executed according to current safety standards. Have the efficiency and suitability of the earthing system checked by professionally qualified personnel. The manufacturer is not responsible for any damage caused by failure to earth the system. Also make sure that the electrical system is adequate for the maximum power absorbed by the unit, as specified on the boiler dataplate, in particular ensuring that the cross sectional area of the system’s cables is suitable for the power absorbed by the unit.

The boiler is prewired and provided with a cable and fitted with a 3 amp plug for connection to the electricity supply.
The user must never change the unit’s power cable. If the cable gets damaged, switch off the unit and have it changed only by professionally qualified personnel. If changing the electric power cable, use only “HAR H05 VV-F” 3x0.75 mm² cable with a maximum outside diameter of 8 mm.

Access to the electrical terminal block
Follow the instructions given in fig. 13 to access the electrical connection terminal block. The layout of the terminals for the various connections is given in the wiring diagram in the Technical Data chapter.

Key
62 Time Clock (optional)

Room thermostat
Remove connections 5 - 6 if external control fitted.

Warning: the room thermostat works at 230V
Central heating Demand
The heat demand can be controlled by the room thermostat (terminal 5-6) or by a switch line 230 V (terminal 5).

Standard Systems
For a general pipe layout and wiring diagram on the “S” and “Y” plan systems please see fig. 15a, 15b, and 16a, 16b.

OPTIMAX “S” Plan

Pipe layout

Wiring diagram

Remove Link between terminals 5-6

230 Vac fused at 3 amps

Fig. 15a

Fig. 15b
2.6 Flue system

The unit is “type C” with a **sealed chamber** and forced draught, the air inlet and flue outlet must be connected to one of the following flue systems. With the aid of the tables and methods of calculation indicated, before commencing installation, it is first necessary to check that the flue system does not exceed the maximum permissible length. The current standards and local regulations must be observed.

⚠️ It should be noted that only Ferroli flue system and accessories should be used on this appliance, as per BS 5440 2000 and C.E. test certification.
Connection with concentric flue system

The unit can be connected to a concentric air/flue duct with a Horizontal or Vertical outlet as shown on the following drawings. Numerous accessories are available on request to meet the various installation requirements. Please refer to our “flue manual” or the price list.

Standard concentric flue installation

Horizontal flue installation

1. Define the position for installing the unit.
2. If using standard flue (1KWMA53A) this must be installed level, for non-standard flue lengths over 1mtr a fall of 3 mm per metre should be incorporated back to the boiler.
3. Make a hole of diameter 10 - 20 mm greater than the nominal diameter of the concentric pipe used.
4. If necessary, cut the terminal length to size, ensuring that the external pipe protrudes from the wall by between 10 and 60 mm (fig. 17a and 17b). Remove the cutting burrs.
5. Connect the flue to the boiler, positioning the seals correctly. Seal the flue into the wall with silicone or sand + cement and cover with wall seals provided.

Flue seals should be lubricated with a silicone type grease to prevent damage (grease not supplied)
Vertical Outlet

The total length in equivalent metres of the concentric flue must not exceed the maximum lengths stated in the following table, note that each bend gives rise to the stated reduction. For example, a duct = 60/100 composed of 1 bend of 90° + 1 horizontal metre + 2 bends of 45° + 1 horizontal metre has a total equivalent length of 4 metres.

Vertical fluening

The installation of a concentric vertical flue can be carried out as follows.

1. Connect onto the flue assembly at the top of the appliance a concentric vertical adaptor part number 1KWMA71W.
2. Use the required amount of 1mtr flue extensions (part number 1KWMA56U) inserting them spigot down ensuring the seals are well lubricated with silicone grease (not supplied) and correctly located into the sockets.
3. If required 45° bends (Part number1KWMA64A) may be used with a resistance value of 0.5mtrs each, the flue should be routed in such away to avoid any unnecessary deviation and thus minimise the amount of bends required.
4. The termination should be made through our concentric flue outlet (part number 1KWMA83U) in conjunction with a roof slate pitched (part number 1KWMA82U) or flat roof (part number 1KWMA81U) The storm collar must be fixed on using the three screws provided and sealed with an external grade silicone (not supplied).
5. For longer flue lengths a 125mm concentric flue system is available.
6. All flue installations must comply with BS5440 part 1 and must only be of Fèrroli manufacture. The vertical flue must continually rise and be supported throughout its length. The flue must be inspected whilst commissioning the appliance to ensure it is sound throughout its length.

This information is for guidance purposes and Fèrroli will in no way be held responsible for incorrect installation following this guide.

<table>
<thead>
<tr>
<th>Table 2a</th>
<th>Ø mm 60/100</th>
<th>Ø mm 80/125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum permissible duct length (Horizontal)</td>
<td>5 m</td>
<td>15 m</td>
</tr>
<tr>
<td>Maximum permissible duct length (Vertical)</td>
<td>6 m</td>
<td>16 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2b</th>
<th>Reduction factors for bends</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentric bend at 90° - Ø 60/100 mm</td>
<td>1 m</td>
</tr>
<tr>
<td>Concentric bend at 45° - Ø 60/100 mm</td>
<td>0.5 m</td>
</tr>
<tr>
<td>Concentric bend at 90° - Ø 80/125 mm</td>
<td>0.5 m</td>
</tr>
<tr>
<td>Concentric bend at 45° - Ø 80/125 mm</td>
<td>0.25 m</td>
</tr>
</tbody>
</table>

![fig. 17c](image_url)
Connection with 80 mm pipe system

The unit can be connected to a system of separate air/flue pipes for a Horizontal or Vertical outlet as shown fig 18 - 19. Numerous accessories are available on request to meet the various installation requirements. The components used most frequently are stated in tables 4 - 5. Please refer to the flue manual or the price list for additional components.

To check you do not exceed the maximum permissible flue length, it is necessary to make a simple calculation before installation:

1. For each component, tables 4 - 5 provide an “equivalent loss in linear metres”, depending on the position of installation of the component (with air intake or flue extraction, vertical or horizontal). The loss is called “equivalent length” since it is compared to the loss of one metre of flue (defined as equal to 1). For example, a bend at 90° of Ø80 in flue extraction has an equivalent loss of 2 linear metres, i.e. it has a loss equal to that of 2 linear metres of flue length.

2. After completely defining the layout of the system of split flues, add up the losses in equivalent metres, depending on the installation position, of all the components and accessories in the system.

3. Check that the total calculated loss is less than or equal to 95 equivalent metres, i.e. the maximum permissible for this model of boiler.

For complete flue options please contact ferroli or check our comprehensive flue manual.

Table 3

<table>
<thead>
<tr>
<th>Ref.</th>
<th>N° Pieces</th>
<th>Description</th>
<th>Equivalent loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>36</td>
<td>Vertical air pipe Ø80</td>
<td>36 m</td>
</tr>
<tr>
<td>4</td>
<td>29</td>
<td>Vertical flue pipe Ø80</td>
<td>46.4 m</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>80 Ø vertical flue Kit</td>
<td>12.0 m</td>
</tr>
</tbody>
</table>

Total 94.4 m
Table of Ø80 flue and accessory

Table 4

<table>
<thead>
<tr>
<th>Accessories Ø 80</th>
<th>Equivalent losses in metres (linear)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Air</td>
</tr>
<tr>
<td>Pipe Ø 80</td>
<td></td>
</tr>
<tr>
<td>male-female</td>
<td></td>
</tr>
<tr>
<td>1KWMA83W • 1.00 m</td>
<td>1</td>
</tr>
</tbody>
</table>

Bend 45° Ø 80 mm				
male - female				
1KWMA65W	1.2	1.8	1.8	

Bend 90° Ø 80 mm				
male - female				
1KWMA01W	1.5	2.0	2.0	

Table 5

<table>
<thead>
<tr>
<th>Accessories Ø 80</th>
<th>Equivalent losses in metres (linear)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Air</td>
</tr>
<tr>
<td>Horizontal</td>
<td></td>
</tr>
<tr>
<td>flue terminal</td>
<td></td>
</tr>
<tr>
<td>1KWMA86A</td>
<td>5</td>
</tr>
</tbody>
</table>

Horizontal				
air terminal				
1KWMA85A	2			

Vertical				
flue terminal				
1KWMA84U	12			

The stated loss values refer to genuine Ferroli flue accessories.

Terminal Position

![Diagram of terminal position](image)

fig. 20
Minimum Dimensions of Flue Terminal Positions

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Directly below an opening, air brick, opening windows, etc.</td>
<td>300mm</td>
</tr>
<tr>
<td>B</td>
<td>Above an opening, air brick, opening windows, etc.</td>
<td>300mm</td>
</tr>
<tr>
<td>C</td>
<td>Horizontally to an opening, air brick, opening windows, etc.</td>
<td>300mm</td>
</tr>
<tr>
<td>D</td>
<td>Below gutters, soil pipes or drain pipes</td>
<td>75mm</td>
</tr>
<tr>
<td>E</td>
<td>Below eaves</td>
<td>200mm</td>
</tr>
<tr>
<td>F</td>
<td>Below balconies or car port roof</td>
<td>200mm</td>
</tr>
<tr>
<td>G</td>
<td>From a vertical drain pipe or soil pipe</td>
<td>150mm</td>
</tr>
<tr>
<td>H</td>
<td>From an internal or external corner</td>
<td>100mm</td>
</tr>
<tr>
<td>I</td>
<td>Above ground roof or balcony level</td>
<td>300mm</td>
</tr>
<tr>
<td>J</td>
<td>From a surface facing the terminal</td>
<td>600mm</td>
</tr>
<tr>
<td>K</td>
<td>From a terminal facing the terminal</td>
<td>1200mm</td>
</tr>
<tr>
<td>L</td>
<td>From an opening in the car port (e.g. door, window) into the dwelling</td>
<td>1200mm</td>
</tr>
<tr>
<td>M</td>
<td>Vertically from a terminal on the same wall</td>
<td>1500mm</td>
</tr>
<tr>
<td>N</td>
<td>Horizontally from a terminal on the same wall</td>
<td>300mm</td>
</tr>
<tr>
<td>O</td>
<td>From the wall on which the terminal is mounted</td>
<td>N/A</td>
</tr>
<tr>
<td>P</td>
<td>From a vertical structure on the roof</td>
<td>150mm</td>
</tr>
<tr>
<td>Q</td>
<td>Above intersection with roof</td>
<td>300mm</td>
</tr>
</tbody>
</table>

NOTE

N/A = Not applicable

In addition, the terminal should not be nearer than 150mm (fanned draught) to an opening in the building fabric formed for the purpose of accommodating a built-in element such as a window frame.

Condensing Terminal Positions: If the flue is to be terminated at low level, then the potential effect of the plume must be considered.

The plume should not be directed:
- across a frequently used access route
- towards a window or door
- across a neighbouring property
Connection to collective flues or single flues with natural draught

If you are then going to connect the OPTIMAX HE 25 S boiler to a collective flue or a single flue with natural draught, the flue must be expressly designed by professionally qualified technical personnel in conformity with the standards and rules in force.

In particular, flues must have the following characteristics:

- Be sized according to the method of calculation stated in the standard
- Be airtight to the products of combustion, resistant to the fumes and heat and waterproof for the condensate
- Have a circular or square cross-section (some hydraulically equivalent sections are permissible), with a vertical progression and with no constrictions
- Have the flue conveying the hot fumes adequately distanced or isolated from combustible materials
- Be connected to just one unit per floor, for at most 6 units in all (8 if there is a compensation duct or opening)
- Have no mechanical suction devices in the main ducts
- Be at a lower pressure, all along their length, under conditions of stationary operation
- Have at their base a collection chamber for solid materials or condensation of at least 0.5 m, equipped with a metal door with an airtight closure.

2.7 Condensate outlet connection

The boiler is equipped with an internal air-trap to drain off the condensate. Fit the inspection coupling A and the hose B, pushing it on for approximately 3 cm and securing it with a clamp.

Fill the air-trap with approximately 0.5 ltrs of water and connect the hose to the waste system, or soakaway.
Condensate discharge
Where possible the condensate should discharge into an internal soil pipe or waste system. The minimum pipe diameter required is 22 mm, a trap has already been fitted to the appliance with a flexible tail to facilitate the connection to the condensate discharge pipe.

The pipe should be a solvent weld plastic, not copper, as the condensate has a pH value of 4 (slightly acidic).

Where it is not possible to terminate internally, the condensate discharge pipe may be run outside (see below drawing).

Any external run is subject to freezing, in severe weather conditions. To avoid this the pipework should be installed to dispose of the condensate quickly, with as much as possible run internally, before passing through the wall.

Pipework external to the building should be increased in diameter to 32 or 40 mm solvent weld. It should be run to a external drain or soakaway, with a maximum length of 3 metres.

When a soakaway (condensate absorption point) is used, it should be constructed as shown below, or use a specifically designed unit, for example Mc Alpine SOAK1GR available from most plumbing and heating stockists.

fig. 22
3. SERVICE AND MAINTENANCE

3.1 Adjustments

All adjustment and conversion operations must be carried out by Qualified Personnel such as ferroli Technical Service.
FERROLI declines any responsibility for damage or physical injury caused by unqualified and unauthorized persons tampering with the device.

Gas supply conversion

The unit can function with either Natural Gas or LPG (commercial propane) and is factory-set for use with one of the two gases, as clearly shown on the packing and on the unit’s dataplate. Whenever a different gas to that for which the unit is preset has to be used, a conversion kit will be required, proceeding as follows:

1. Remove the casing.
2. Open the airtight chamber.
3. Unscrew the gas coupling A on the air/gas mixer.
4. Replace the injector in the mixer with the one contained in the conversion kit.
5. Refit the coupling A and check the connection is gastight.
6. Apply the sticker, contained in the conversion kit, near the dataplate.
7. Fit the airtight chamber and casing back on.
8. Adjust the parameter for the specific type of gas to be used:
 - Turn the boiler onto standby
 - Press the DHW buttons (part. 1, 2 - fig. 1) for 10 seconds: the display will show “P01” blinking
 - Press the DHW buttons (part. 1, 2 - fig. 1) to set parameter 00 (for natural gas operation) or 01 (for LPG operation)
 - Press the DHW buttons (part. 1, 2 - fig. 1) for 10 seconds
 - The boiler will go back onto standby
9. Check working pressure.
10. Check CO₂ mixture as detailed (page 28 combustion analyser testing).

<table>
<thead>
<tr>
<th>Natural gas</th>
<th>LPG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injector Ø</td>
<td>See technical data table</td>
</tr>
</tbody>
</table>
3.2 System start-up

Commissioning must be performed by Qualified Personnel. Checks to be made at first ignition, and after all maintenance operations that involved disconnecting from the systems or an intervention of a safety device.

Before lighting the boiler:
- Open any isolation valves between the boiler and the system.
- Check the tightness of the gas system, proceeding with caution and use gas leak detection fluid to detect any leaks in connections.
- Check the pre-filling of the expansion tank (ref. sec. 4.4)
- Fill the water system and make sure that all air contained in the boiler and the system has been vented by opening the air vent valve on the boiler and any vent valves on the system.
- Make sure there are no water leaks in the system, hot water circuits, connections or boiler.
- Make sure the electrical system is properly connected.
- Make sure that the unit is connected to a good earthing system.
- Make sure there are no flammable liquids or materials in the immediate vicinity of the boiler.
- Vent and spin the pump.
- Ensure the flue system is correctly fitted, including terminal locations.

Ignition
- Open the gas valve upstream of the boiler.
- Purge the air from the installation pipework to the appliance.
- Switch on the boiler electrical supply.
- Press the key on the boiler for 5 seconds (part. 7 - fig. 1).
- The boiler is now ready to function automatically whenever the external controls call for a demand.

In case of an electrical power failure while the boiler is working, the burner will go out. When power returns, the boiler will run the self-test cycle again, after which the burner will automatically re-ignite (if there is still demand for heat).

Checks during operation
- Check the tightness of the gas circuit and water systems.
- Check the efficiency of the flue and air-flue ducts while the boiler is working.
- Check that the water is circulating properly between the boiler and the system.
- Make sure that the gas valve modulates correctly.
- Check the proper ignition of the boiler by performing various tests, turning it on and off with the room thermostat or remote control.
- Make sure that the fuel consumption indicated on the meter corresponds to that given in the technical data table in section 4.4 page 33

Turning off
Press the key for 5 seconds (part. 7 - fig. 1).
3.3 Maintenance

⚠️ The following operations are strictly reserved for Qualified Personnel, such as corgi registered engineers or Ferroli engineers.

Seasonal inspection of the boiler and flue

It is advisable to carry out the following checks at least once a year:

- The control and safety devices (gas valve, flow meter, thermostats, etc.) must function correctly.
- The flue terminal end piece and ducts must be free of obstructions and leaks.
- The gas and water systems must be sound.
- The burner and exchanger must be clean.
- The electrodes must be free of scale and correctly positioned.
- The system pressure when cold must be approx 1 bar; otherwise, bring it to that value.
- The expansion vessel must be filled to 1 bar cold with zero system pressure.
- The gas flow and pressure must correspond to that given in table 10 section 4.4 page 33.
- The circulating pump must be vented and free of debris.
- The returned filter cleaned.
- The condensate trap inspection bowl should be cleaned and free of debris.
Opening the casing
To open the boiler casing, you need to follow the sequence given below and the instructions of fig. 24.

1. Using a screwdriver, fully unscrew and remove the 2 screws “A”
2. Open by lowering the panel “B”
3. Lift and take off the casing “C”

Cleaning the boiler and burner
The body and burner must not be cleaned with chemical products or wire brushes. Special care must be taken over all the sealing systems pertaining to the sealed chamber (gaskets, cable clamps, etc.). In addition, it is necessary to pay attention after performing all these operations to check and carry out all the phases of ignition and thermostat operation, the gas valve and circulation pump.

⚠️ After these checks, make sure there are no gas leaks.

Combustion analysis
It is possible to analyse the combustion through the air and flue sampling points shown in fig. 25.
To make the measurement, it is necessary to:
1) Open the flue sampling point
2) Insert the probe;
3) Press CH button (part. 3, 4 - fig. 1) for 5 seconds to turn on TEST mode;
4) Wait 10 minutes for the boiler to stabilize
5) Take the measurement.

NAT GAS; CO2 reading should be 8.7 to 9.0%
L.P.G; CO2 reading should be 9.5 to 10%

Readings taken with an unstabilized boiler will cause measurement errors.
3.4 Troubleshooting

Fault Diagnosis

In the event of operating problems or trouble, the display will flash and a fault identification code appears.

There are faults that in order to restore operation the RESET button must be pressed (ref. 6 - fig. 1); or if the boiler fails to start, it will be necessary to repair the fault (code nos. F1 to F24). Other faults cause temporary shutdowns that are automatically reset as soon as the value comes back within the boiler’s normal working range (codes from 25 to 47).

When the boiler starts functioning normally again, the display stops flashing and the fault code disappears.

<table>
<thead>
<tr>
<th>Fault</th>
<th>Possible cause</th>
<th>Cure</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01 No burner ignition</td>
<td>No gas</td>
<td>Check the regular gas flow to the boiler and the air has been purged from the pipes.</td>
</tr>
<tr>
<td></td>
<td>Detection or ignition electrode fault</td>
<td>Check that the electrodes are correctly positioned and free of any deposits</td>
</tr>
<tr>
<td></td>
<td>Defective gas valve</td>
<td>Check and change the gas valve</td>
</tr>
<tr>
<td></td>
<td>Incorrect inlet gas pressure</td>
<td>Check inlet gas pressure</td>
</tr>
<tr>
<td></td>
<td>Siphon obstructed</td>
<td>Check and if necessary change the siphon</td>
</tr>
<tr>
<td>A02 Flame detected with the burner off</td>
<td>Ionisation electrode defective</td>
<td>Check the ionizing electrode wiring</td>
</tr>
<tr>
<td></td>
<td>Main board defective</td>
<td>Check the PCB</td>
</tr>
<tr>
<td>A03 High limit protection</td>
<td>Flow sensor not active or correctly located</td>
<td>Check the correct positioning and operation of the flow sensor</td>
</tr>
<tr>
<td></td>
<td>No system circulation</td>
<td>Check the pump and radiator valves present in the system and automatic by-pass</td>
</tr>
<tr>
<td>A04 Flue gas fault</td>
<td>Fault F07 happened 3 times in the last 24 hours</td>
<td>Check the flue</td>
</tr>
<tr>
<td>A05 Fan problem</td>
<td>Tachometer signal interrupted for 1 hour</td>
<td>Check the wiring and the fan</td>
</tr>
<tr>
<td>A06 No flame after the ignition phase (6 times in 4 min.)</td>
<td>Detection electrode fault</td>
<td>Check that the electrode is correct positioned and if necessary change it</td>
</tr>
<tr>
<td></td>
<td>Flame instable</td>
<td>Check the burner</td>
</tr>
<tr>
<td></td>
<td>Incorrect valve gas Offset</td>
<td>Check Offset at the minimum power</td>
</tr>
<tr>
<td></td>
<td>Flue gas circuit obstructed</td>
<td>Check if flue gas circuit is free</td>
</tr>
<tr>
<td></td>
<td>Siphon obstructed</td>
<td>Check and if necessary change the siphon</td>
</tr>
<tr>
<td>A41 Flow sensor disconnected</td>
<td>Sensor disconnected</td>
<td>Check the correct position and operation of the flow sensor</td>
</tr>
<tr>
<td>F07 Flue gas fault</td>
<td>The exhaust gases temperature becomes higher than 95°C for 2 minutes longer.</td>
<td>Check the flue</td>
</tr>
<tr>
<td>F10 Flow sensor fault</td>
<td>Sensor damaged or short circuited</td>
<td>Check the wiring or change the sensor</td>
</tr>
<tr>
<td></td>
<td>Sensor damaged or wiring broken</td>
<td>Check the wiring or change the sensor</td>
</tr>
<tr>
<td>F11 Return sensor fault</td>
<td>Sensor damaged or wiring shorted</td>
<td>Check the wiring or change the sensor</td>
</tr>
<tr>
<td></td>
<td>Sensor damaged or wiring broken</td>
<td>Check the wiring or change the sensor</td>
</tr>
<tr>
<td>Fault</td>
<td>Possible cause</td>
<td>Cure</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>F13 Flue sensor fault</td>
<td>Sensor damaged or wiring shorted</td>
<td>Check the wiring or change the sensor</td>
</tr>
<tr>
<td></td>
<td>Sensor damaged or wiring broken</td>
<td>Check the wiring or change the sensor</td>
</tr>
<tr>
<td>F14 Flow sensor fault</td>
<td>Sensor damaged or short circuited</td>
<td>Check the wiring or change the sensor</td>
</tr>
<tr>
<td></td>
<td>Sensor damaged or wiring broken</td>
<td>Check the wiring or change the sensor</td>
</tr>
<tr>
<td>F15 Fan problem</td>
<td>Tachometer signal interrupted, fan connection</td>
<td>Check the wiring and fan</td>
</tr>
<tr>
<td></td>
<td>Fan damaged, debris in fan</td>
<td>Check the fan, clean debris</td>
</tr>
<tr>
<td>F34 Supply voltage under 180V.</td>
<td>Electric mains fault</td>
<td>Check the electrical system</td>
</tr>
<tr>
<td>F35 Irregular mains frequency</td>
<td>Electric mains fault</td>
<td>Check the electrical system</td>
</tr>
<tr>
<td>F37 Incorrect system water pressure</td>
<td>Pressure too low</td>
<td>Fill the system</td>
</tr>
<tr>
<td></td>
<td>Sensor damaged</td>
<td>Check the sensor</td>
</tr>
<tr>
<td>F40 Incorrect system water pressure</td>
<td>Pressure too high above 3 - 5 bar</td>
<td>Check the filling loop is not passing and disconnected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check the wiring and sensor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check the safety valve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check the expansion vessel</td>
</tr>
<tr>
<td>F42 Flow sensor fault</td>
<td>Sensor damaged</td>
<td>Change the sensor</td>
</tr>
<tr>
<td>F47 N/A for UK</td>
<td>Wiring interrupted</td>
<td>Check the wiring</td>
</tr>
<tr>
<td></td>
<td>Sensor damaged</td>
<td>Replace the sensor</td>
</tr>
</tbody>
</table>
4. TECHNICAL CHARACTERISTICS AND DATA

4.1 Dimensions and connections

Key

1. System flow (22 mm with isolation valve fitted)
2. Gas inlet (22 mm with isolation valve fitted)
3. System return - 22 mm with isolation valve fitted (c/w filter)
4. Pressure Relief Valve
5. Condense outlet

fig. 26
4.2 General view and main components

5 Room sealed compartment
7 Gas inlet
10 CH flow
11 CH return
14 Heating safety valve
16 Premix fan assembly
19 Combustion compartment
21 Main injector
22 Main burner
29 Flue Collar
32 Pump
36 Automatic air vent
44 Gas valve
56 Expansion vessel
82 Ionisation electrode
145 System pressure gauge
154 Condensate outlet pipe
161 Heat exchanger
186 Return sensor
188 Ignition electrode
191 Flue gas temperature sensor
196 Condensate collector
201 Fan Venturi
241 Automatic by-pass
246 System pressure sensor
278 Double sensor (Safety + Heating)

fig. 27
4.3 Hydraulic diagram

Key

7 Gas inlet 154 Condensate outlet pipe
10 CH flow 161 Heat exchanger
11 CH return 186 Return sensor
14 Pressure Relief valve 193 Siphon
16 Premix fan assembly 201 Fan Venturi
32 Pump 241 Automatic by-pass
36 Automatic air vent 246 System pressure sensor
44 Gas valve 278 Double sensor (Safety + Heating)
56 Expansion vessel
4.4 Technical data table

Table 10

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pmax</th>
<th>Pmin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output max/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH Heat input</td>
<td>kW</td>
<td>25.2</td>
</tr>
<tr>
<td>Useful heat output 80° C - 60° C</td>
<td>kW</td>
<td>24.6</td>
</tr>
<tr>
<td>Useful heat output 50° C - 30° C</td>
<td>kW</td>
<td>26.6</td>
</tr>
<tr>
<td>Natural Gas flow rate (G20)</td>
<td>m³/h</td>
<td>2.67</td>
</tr>
<tr>
<td>Natural Gas supply pressure (G20)</td>
<td>mbar</td>
<td>20</td>
</tr>
<tr>
<td>LPG flow rate (G31)</td>
<td>kg/h</td>
<td>1.97</td>
</tr>
<tr>
<td>LPG supply pressure (G31)</td>
<td>mbar</td>
<td>37</td>
</tr>
<tr>
<td>Combustion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seasonal Efficiency (SEDBUK)</td>
<td>%</td>
<td>90.5</td>
</tr>
<tr>
<td>CO₂ (G20 - Natural Gas)</td>
<td>%</td>
<td>9.0</td>
</tr>
<tr>
<td>Gas nozzle (G20 - Natural Gas)</td>
<td>Ø mm</td>
<td>5.6</td>
</tr>
<tr>
<td>CO₂ (G31 - Propane)</td>
<td>%</td>
<td>10</td>
</tr>
<tr>
<td>Gas nozzle (G31 - Propane)</td>
<td>Ø mm</td>
<td>4.2</td>
</tr>
<tr>
<td>Flue gas temperature 80°C - 60°C</td>
<td>°C</td>
<td>65</td>
</tr>
<tr>
<td>Flue gas temperature 50°C - 30°C</td>
<td>°C</td>
<td>46</td>
</tr>
<tr>
<td>Flue gas flow rate</td>
<td>kg/h</td>
<td>42.4</td>
</tr>
<tr>
<td>Energy marking (92/42 EEC directive)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx emission class</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Heating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating temperature adjustment range</td>
<td>°C</td>
<td>20 - 90</td>
</tr>
<tr>
<td>Maximum working temperature in heating</td>
<td>°C</td>
<td>95</td>
</tr>
<tr>
<td>Heating circuit PMS safety valve (preset)</td>
<td>bar</td>
<td>3</td>
</tr>
<tr>
<td>Minimum working pressure in heating</td>
<td>bar</td>
<td>0.8</td>
</tr>
<tr>
<td>Expansion vessel capacity</td>
<td>litres</td>
<td>7</td>
</tr>
<tr>
<td>Expansion vessel pre-filling pressure</td>
<td>bar</td>
<td>1</td>
</tr>
<tr>
<td>Total boiler water content</td>
<td>litres</td>
<td>1.5</td>
</tr>
<tr>
<td>Dimensions, weights connections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>mm</td>
<td>700</td>
</tr>
<tr>
<td>Width</td>
<td>mm</td>
<td>400</td>
</tr>
<tr>
<td>Depth</td>
<td>mm</td>
<td>330</td>
</tr>
<tr>
<td>Weight empty</td>
<td>kg</td>
<td>37</td>
</tr>
<tr>
<td>Gas system connection (with isolation valve fitted)</td>
<td>mm</td>
<td>Ø22</td>
</tr>
<tr>
<td>Heating system connections (with isolation valve fitted)</td>
<td>mm</td>
<td>Ø22</td>
</tr>
<tr>
<td>Hot water circuit connections (with isolation valve fitted)</td>
<td>mm</td>
<td>Ø15</td>
</tr>
<tr>
<td>Maximum length of separate flues D=80°</td>
<td>m<sub>eq</sub></td>
<td>95</td>
</tr>
<tr>
<td>(Measurement given in equivalent linear metres – ch FERROLI calculation system)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical power supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max electrical power absorbed</td>
<td>W</td>
<td>120</td>
</tr>
<tr>
<td>Electric power drawn by the circulator (Speed I-Ill)</td>
<td>W</td>
<td>55-60-65</td>
</tr>
<tr>
<td>Electrical protection rating</td>
<td>IP</td>
<td>X5D</td>
</tr>
<tr>
<td>Power voltage/frequency</td>
<td>V/Hz</td>
<td>230/50</td>
</tr>
</tbody>
</table>
4.5 Diagrams

Head available for the system

Key

1 - 2 - 3 = Pump selector positions

A = Boiler losses of head

fig. 29
4.6 Wiring diagram

Key

- **16** Fan
- **32** Central heating pump
- **44** Combination gas valve
- **62** Time clock (optional)
- **81** Spark Electrode
- **82** Ionisation electrode
- **101** Main p.c.b.
- **103** Relay
- **104** Fuse
- **186** Return temperature sensor
- **191** Exhaust temperature sensor
- **202** Transformer 230V-24V
- **203** Supply lead and 3 Amp plug
- **246** System pressure sensor
- **278** Double sensor (Safety + Heating)
GAS BOILER COMMISSIONING CHECKLIST

BOILER SERIAL No. __________________________ **NOTIFICATION No.** __________________________

CONTROLS To comply with the Building Regulations, each section must have a tick in one or other of the boxes

<table>
<thead>
<tr>
<th>TIME & TEMPERATURE CONTROL TO HEATING</th>
<th>ROOM T/STAT & PROGRAMMER/TIMER</th>
<th>PROGRAMMABLE ROOMSTAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME & TEMPERATURE CONTROL TO HOT WATER</td>
<td>CYLINDER T/STAT & PROGRAMMER/TIMER</td>
<td>COMBI BOILER</td>
</tr>
<tr>
<td>HEATING ZONE VALVES</td>
<td>Fitted</td>
<td>Not Required</td>
</tr>
<tr>
<td>HOT WATER ZONE VALVES</td>
<td>Fitted</td>
<td>Not Required</td>
</tr>
<tr>
<td>THERMOSTATIC RADIATOR VALVES</td>
<td>Fitted</td>
<td></td>
</tr>
<tr>
<td>AUTOMATIC BYPASS TO SYSTEM</td>
<td>Fitted</td>
<td>Not Required</td>
</tr>
</tbody>
</table>

FOR ALL BOILERS CONFIRM THE FOLLOWING

- The system has been flushed in accordance with the boiler manufacturer’s instructions? ____________
- The system cleaner used ____________
- The inhibitor used ____________

FOR THE CENTRAL HEATING MODE, MEASURE & RECORD

- Gas rate ____________ m³/hr ____________ ft³/hr
- Burner operating pressure (if applicable) ____________ N/A ____________ mbar
- Central heating flow temperature ____________ °C
- Central heating return temperature ____________ °C

FOR COMBINATION BOILERS ONLY

- Has a water scale reducer been fitted? **YES** ☐ **NO** ☐
- What type of scale reducer has been fitted? ____________

FOR THE DOMESTIC HOT WATER MODE, MEASURE & RECORD

- Gas rate ____________ m³/hr ____________ ft³/hr
- Maximum burner operating pressure (if applicable) ____________ N/A ____________ mbar
- Cold water inlet temperature ____________ °C
- Hot water outlet temperature ____________ °C
- Water flow rate ____________ lts/min

FOR CONDENSING BOILERS ONLY CONFIRM THE FOLLOWING

- The condensate drain has been installed in accordance with the manufacturer’s instructions? **YES** ☐

FOR ALL INSTALLATIONS CONFIRM THE FOLLOWING

- The heating and hot water system complies with current building regulations ____________
- The appliance and associated equipment has been installed and commissioned in accordance with the manufacturer’s instructions ____________
- If required by the manufacturer, have you recorded a CO/CO₂ ratio reading? N/A ☐ YES ☐ CO/CO₂ ratio ____________
- The operation of the appliance and system controls have been demonstrated to the customer ____________
- The manufacturer’s literature has been left with the customer ____________

COMMISSIONING ENG’S NAME __________________________ **CORGI ID No.** __________________________

SIGN __________________________ **DATE** __________________________
It is recommended that your heating system is serviced regularly and that you complete the appropriate Service Interval Record Below.

Service Provider. Before completing the appropriate Service Interval Record below, please ensure you have carried out the service as described in the boiler manufacturer’s instructions. Always use the manufacturer’s specified spare part when replacing all controls.

<table>
<thead>
<tr>
<th>SERVICE 1</th>
<th>DATE</th>
<th>ENGINEER NAME</th>
<th>COMPANY NAME</th>
<th>TEL No.</th>
<th>CORGI ID CARD SERIAL No.</th>
<th>COMMENTS</th>
<th>SIGNATURE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SERVICE 2</th>
<th>DATE</th>
<th>ENGINEER NAME</th>
<th>COMPANY NAME</th>
<th>TEL No.</th>
<th>CORGI ID CARD SERIAL No.</th>
<th>COMMENTS</th>
<th>SIGNATURE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SERVICE 3</th>
<th>DATE</th>
<th>ENGINEER NAME</th>
<th>COMPANY NAME</th>
<th>TEL No.</th>
<th>CORGI ID CARD SERIAL No.</th>
<th>COMMENTS</th>
<th>SIGNATURE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SERVICE 4</th>
<th>DATE</th>
<th>ENGINEER NAME</th>
<th>COMPANY NAME</th>
<th>TEL No.</th>
<th>CORGI ID CARD SERIAL No.</th>
<th>COMMENTS</th>
<th>SIGNATURE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SERVICE 5</th>
<th>DATE</th>
<th>ENGINEER NAME</th>
<th>COMPANY NAME</th>
<th>TEL No.</th>
<th>CORGI ID CARD SERIAL No.</th>
<th>COMMENTS</th>
<th>SIGNATURE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SERVICE 6</th>
<th>DATE</th>
<th>ENGINEER NAME</th>
<th>COMPANY NAME</th>
<th>TEL No.</th>
<th>CORGI ID CARD SERIAL No.</th>
<th>COMMENTS</th>
<th>SIGNATURE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SERVICE 7</th>
<th>DATE</th>
<th>ENGINEER NAME</th>
<th>COMPANY NAME</th>
<th>TEL No.</th>
<th>CORGI ID CARD SERIAL No.</th>
<th>COMMENTS</th>
<th>SIGNATURE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SERVICE 8</th>
<th>DATE</th>
<th>ENGINEER NAME</th>
<th>COMPANY NAME</th>
<th>TEL No.</th>
<th>CORGI ID CARD SERIAL No.</th>
<th>COMMENTS</th>
<th>SIGNATURE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SERVICE 9</th>
<th>DATE</th>
<th>ENGINEER NAME</th>
<th>COMPANY NAME</th>
<th>TEL No.</th>
<th>CORGI ID CARD SERIAL No.</th>
<th>COMMENTS</th>
<th>SIGNATURE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SERVICE 10</th>
<th>DATE</th>
<th>ENGINEER NAME</th>
<th>COMPANY NAME</th>
<th>TEL No.</th>
<th>CORGI ID CARD SERIAL No.</th>
<th>COMMENTS</th>
<th>SIGNATURE</th>
</tr>
</thead>
</table>

FERROLI TECHNICAL HELPLINE - 08707 282 885
Should you require any assistance during the installation
call our Technical Service Helpline on
08707 282 885 option 1
Should you require a service engineer to visit
call our service centre on
08707 282 885 option 2
(For U.K. and Northern Ireland)

For EIRE only call HEATOVENT on
014508166

Phone numbers:
Installer __________________________
Service Engineer _______________________

BECAUSE OF OUR CONSTANT ENDEAVOUR FOR IMPROVEMENT DETAILS
MAY VARY SLIGHTLY FROM THOSE QUOTED IN THESE INSTRUCTIONS.

ALL SPECIFICATIONS SUBJECT TO CHANGE

Please note - to avoid incurring unnecessary expense, in the event of a boiler shut down, check
this is not caused by lack of electricity supply, gas supply or low water pressure before calling our
Customer Service Helpline.

Lichfield Road, Branston Industrial Estate, Burton Upon Trent, Staffordshire DE14 3HD
Tel. 08707 282 885 - Fax 08707 282 886

EIRE only:
HEATOVENT Greenhills Industrial Estate,
Greenhills Road, Walkinstown, Dublin 12, IRELAND
Tel 014508166 - Fax 014508501