installation and servicing

Elise
(V3 Flue System)

Your Ideal installation and servicing guide

For details of document amendments, refer to page 3

HE15, HE24

For users guide see reverse of book

When replacing any part on this appliance, use only spare parts that you can be assured conform to the safety and performance specification that we require. Do not use reconditioned or copy parts that have not been clearly authorised by Ideal Boilers.

December 2008          UIN 203949 A04

For the very latest copy of literature for specification & maintenance practices visit our website www.idealboilers.com where you will be able to download the relevant information in pdf format.
Ideal Stelrad Group reserve the right to vary specification without notice

Ellise - Installation & Servicing
**GENERAL**

<table>
<thead>
<tr>
<th>Boiler Size</th>
<th>H15, H24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas supply type and connection</td>
<td>2H-G20-20 mbar Rc2&quot; (1/2&quot; BSP Female)</td>
</tr>
<tr>
<td>Injector size</td>
<td>Stereomatic 5.6mm dia.</td>
</tr>
<tr>
<td>Flow connection</td>
<td>22mm copper</td>
</tr>
<tr>
<td>Return connection</td>
<td>22mm copper</td>
</tr>
<tr>
<td>Flue terminal diameter</td>
<td>mm (in.)</td>
</tr>
<tr>
<td>Maximum static water head</td>
<td>m (ft.)</td>
</tr>
<tr>
<td>Minimum static water head</td>
<td>m (ft.)</td>
</tr>
<tr>
<td>Electrical supply</td>
<td>230 V ~ 50 Hz</td>
</tr>
<tr>
<td>Boiler power consumption</td>
<td>38W</td>
</tr>
<tr>
<td>Fuse rating</td>
<td>External: 3A Internal: T3.15A L250 V</td>
</tr>
<tr>
<td>Water content</td>
<td>litre (gal.)</td>
</tr>
<tr>
<td>Packaged weight</td>
<td>kg (lb.)</td>
</tr>
<tr>
<td>Maximum installation weight</td>
<td>kg (lb.)</td>
</tr>
<tr>
<td>Boiler size</td>
<td>Height mm (in.)</td>
</tr>
<tr>
<td></td>
<td>Width mm (in.)</td>
</tr>
<tr>
<td></td>
<td>Depth mm (in.)</td>
</tr>
</tbody>
</table>

**Table 2 - Performance Data**

<table>
<thead>
<tr>
<th>Boiler Size</th>
<th>H15 Max</th>
<th>H24 Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler input 'Q' = Nett CV kW</td>
<td>15.1</td>
<td>24.4</td>
<td>9.1</td>
</tr>
<tr>
<td>Btu/h</td>
<td>51 500</td>
<td>83 300</td>
<td>31 000</td>
</tr>
<tr>
<td>Gross CV kW</td>
<td>16.8</td>
<td>27.1</td>
<td>10.1</td>
</tr>
<tr>
<td>Btu/h</td>
<td>57 200</td>
<td>92 500</td>
<td>34 400</td>
</tr>
<tr>
<td>Gas consumption</td>
<td>l/s (cu.ft/h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 °C Mean water temperature kW</td>
<td>14.6</td>
<td>23.4</td>
<td>8.8</td>
</tr>
<tr>
<td>Btu/h</td>
<td>50 000</td>
<td>80 000</td>
<td>30 000</td>
</tr>
<tr>
<td>40 °C Mean water temperature kW</td>
<td>15.5</td>
<td>25.1</td>
<td>9.6</td>
</tr>
<tr>
<td>Btu/h</td>
<td>53 000</td>
<td>85 700</td>
<td>32 800</td>
</tr>
<tr>
<td>Seasonal efficiency (SEDBUK) *</td>
<td>Band A</td>
<td>[90.4]%</td>
<td>[90.2]%</td>
</tr>
<tr>
<td>Key to symbols</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GB = United Kingdom</td>
<td>IE = Ireland</td>
<td>(Countries of destination)</td>
<td></td>
</tr>
<tr>
<td>PMS = Maximum operating pressure of water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1, C2, C3 = A room sealed appliance designed for connection via ducts to a horizontal or vertical terminal which admits fresh air to the burner and discharges the products of combustion to the outside through orifices which, in this case, are concentric. The fan is up stream of the combustion chamber.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2H = An appliance designed for use on 2nd Family gas, Group H only.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The value is used in the UK Government’s Standard Assessment Procedure (SAP) for energy rating of dwellings. The test data from which it has been calculated have been certified by a notified body.

Note.

Gas consumption is calculated using a calorific value of 38.7 MJ/m³ (1038 Btu/ft³) gross or 34.9 MJ/m³ (935 Btu/ft³) nett. To obtain the gas consumption at a different calorific value:

a. For l/s - divide the gross heat input (kW) by the gross C.V. of the gas (MJ/m³)

b. For ft³/h - divide the gross heat input (Btu/h) by the gross C.V. of the gas (Btu/ft³)

CAUTION. To avoid the possibility of injury during the installation, servicing or cleaning of this appliance, care should be taken when handling edges of sheet steel components.
For GB, to comply with Building Regulations Part L1 (Part 6 in Scotland) the boiler should be fitted in accordance with the manufacturer’s instructions. Self-certification that the boiler has been installed to comply with Building Regulations can be demonstrated by completing and signing the Benchmark Commissioning Checklist.

Before installing this boiler, read the Code of Practice sheet supplied in the literature pack.

### BENCHMARK COMMISSIONING CHECKLIST DETAILS

<table>
<thead>
<tr>
<th>Boiler</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make and model</td>
<td>5</td>
</tr>
<tr>
<td>Appliance serial no. on data badge</td>
<td>14</td>
</tr>
<tr>
<td>SEDBUK No. %</td>
<td>4</td>
</tr>
</tbody>
</table>

**Controls**

| Time and temperature control to heating | 30 |
| Time and temperature control to hot water | 30 |
| Heating zone valves | n/a |
| TRV’s | 9 |
| Auto bypass | 9 |
| Boiler interlock | 9 |

**For all boilers**

| Flushing to BS.7593 | 13 |
| Inhibitor | 13 |
| Central heating mode | |

| Heat input | to be calculated |

| Burner operating pressure | n/a |
| Central heating flow temp. | measure and record |
| Central heating return temp. | measure and record |

**For combination boilers only**

| Scale reducer | n/a |

**Hot water mode**

| Heat input | n/a |
| Max. operating burner pressure | n/a |
| Max. operating water pressure | n/a |
| Cold water inlet temp | n/a |
| Hot water outlet temp. | n/a |
| Water flow rate at max. setting | n/a |

**For condensing boilers only**

| Condensate drain | 20 |

**For all boilers:** complete, sign & hand over to customer

For assistance see Technical Helpline on the back page.
1  **BOILER WATER CONNECTIONS**

The boiler flow and return pipes are supplied fitted to the boiler ready for top connection.

**Notes.**

a. For the heating loads in excess of 60,000 Btu/h, 28mm (1") flow and return pipes should be used to and from the boiler.

b. This appliance is NOT suitable for use with a direct hot water cylinder.

---

2  **BOILER CLEARANCES**  

All dimensions in mm (in.)

The following minimum clearances must be maintained for operation and servicing.

Additional space will be required for installation, depending upon site conditions.

### Side and Rear Flue

- Provided that the flue hole is cut accurately, e.g. with a core drill, the flue can be installed from inside the building where wall thicknesses do not exceed 600mm (24"). Where the space into which the boiler is going to be installed is less than the length of flue required the flue must be fitted from the outside.

### Installation from inside ONLY

b. If a core boring tool is to be used inside the building the space in which the boiler is to be installed must be at least wide enough to accommodate the tool.

### Front clearance

- **The minimum front clearance when built in to a cupboard is 5mm (1/4") from the cupboard door but 450mm (17 3/4") overall clearance is still required, with the cupboard door open, to allow for servicing.**

### N.B.

- The boiler will not fit into a standard depth wall unit. In order for it to do so the plastic fascia should be removed. See Frame 41.

### Bottom clearance

- After installation can be reduced to 5mm in an adequately ventilated enclosed cupboard. However, 100mm must be available for servicing.

---

<table>
<thead>
<tr>
<th>Horizontal Length of Flue (m)</th>
<th>Top Clearance (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>165 (6 1/2&quot;)</td>
</tr>
<tr>
<td>1.0</td>
<td>170 (6 1/16&quot;)</td>
</tr>
<tr>
<td>1.5</td>
<td>185 (7 1/4&quot;)</td>
</tr>
<tr>
<td>2.0</td>
<td>200 (7 7/8&quot;)</td>
</tr>
<tr>
<td>2.5</td>
<td>215 (8 1/4&quot;)</td>
</tr>
<tr>
<td>3.0</td>
<td>225 (8 7/8&quot;)</td>
</tr>
<tr>
<td>3.5</td>
<td>235 (9 1/4&quot;)</td>
</tr>
<tr>
<td>4.0</td>
<td>250 (10 7/8&quot;)</td>
</tr>
<tr>
<td>4.5</td>
<td>260 (10 1/4&quot;)</td>
</tr>
<tr>
<td>5.0</td>
<td>275 (10 13/16&quot;)</td>
</tr>
<tr>
<td>5.5</td>
<td>290 (11 3/8&quot;)</td>
</tr>
<tr>
<td>6.0</td>
<td>300 (11 13/16&quot;)</td>
</tr>
</tbody>
</table>

---

**SIDE FLUE ONLY**

**MIN. Top clearance required = 145 mm (5 3/4")**
INTRODUCTION

The Elise range of boilers are a fully automatically controlled, wall mounted, low water content, balanced flue, fan-aided, condensing gas boiler. It has full modulating central heating outputs of:

H15 8.8 kW (30,000 Btu/h) to 14.6 kW (50,000 Btu/h).
H24 8.8 kW (30,000 Btu/h) to 23.4 kW (80,000 Btu/h).

Due to the high efficiency of the boiler a plume of water vapour will form at the flue terminal during operation depending on external conditions.

The boiler casing is of white painted mild steel with the user controls capable of being mounted remotely from the boiler, if the option is required.

The heat exchanger is of cast aluminium.

Note. These boilers cannot be used on systems which include gravity circulation.

The boilers are suitable for connection to fully pumped, open vented or sealed water systems. Adequate arrangements for the completely draining the system by provision of drain cocks MUST be provided in the installation pipework.

OPERATION

When there is a demand for heat, the heating system is supplied at the selected temperature of between 30°C and 82°C.

The boiler features a comprehensive diagnostic system which gives detailed information on the boiler status when operating, and performance of key components to aid commissioning and fault finding.

SAFE HANDLING

This boiler may require 2 or more operatives to move it to its installation site, remove it from its packaging base and during movement into its installation location. Maneuvering the boiler may include the use of a sack truck and involve lifting, pushing and pulling.

Caution should be exercised during these operations. Operatives should be knowledgeable in handling techniques when performing these tasks and the following precautions should be considered:

• Grip the boiler at the base.
• Be physically capable.
• Use PPE as appropriate, e.g. gloves, safety footwear.

During all manoeuvres and handling actions, every attempt should be made to ensure the following unless unavoidable and/or the weight is light:

• Keep back straight.
• Avoid twisting at the waist.
• Avoid upper body/hip heavy bending.
• Always grip with the palm of the hand.
• Use designated hand holds.
• Keep load as close to the body as possible.
• Always use assistance if required.

OPTIONAL EXTRA KITS

• Flue Extension Ducts (1000mm long up to 6m)
• Flue Finishing Kit
• 90° Elbow Kit (maximum 4 elbows per installation).
• 45° Elbow Kit (maximum 4 elbows per installation).
• Roof Flue Kit (to a maximum of 7.5m)

• Powered Vertical Flue Kit 5 m primary and 17 m secondary is a typical maximum flue length. For further details refer to Powered Vertical Fluing Instructions.
• High Level Flue Outlet Kits
• Flue Deflector Kit
• Weather Collar
• Twin Fluing Kits (to a maximum of 60m combined total of flue and air ducts)
• Horizontal Flue 600mm long
• Adjustable Flue Support Bracket
• Remote User Control Kit
• Boiler Stand-off Kit
• Siphon Kit
• Condensate Pump Kit

SAFETY

Current Gas Safety (Installation and Use) Regulations or rules in force.

The appliance is suitable only for installation in GB and IE and should be installed in accordance with the rules in force.

In GB, the installation must be carried out by a Registered Gas Installer. It must be carried out in accordance with the relevant requirements of the:

• Gas Safety (Installation and Use) Regulations
• The appropriate Building Regulations either The Building Regulations, The Building Regulations (Scotland), Building Regulations (northern Ireland).
• The Water Fittings Regulations or Water byelaws in Scotland.
• The Current I.E.E. Wiring Regulations.

Where no specific instructions are given, reference should be made to the relevant British Standard Code of Practice.

In IE, the installation must be carried out by a Competent Person and installed in accordance with the current edition of I.S.813 "Domestic Gas Installations", the current Building Regulations and reference should be made to the current ETCI rules for electrical installation.

Detailed recommendations are contained in the following British Standard Codes of Practice:

BS. 5440:1 Flues (for gas appliances of rated input not exceeding 70 kW).
BS. 5440:2 Ventilation (for gas appliances of rated input not exceeding 70 kW).
BS. 5449 Forced circulation hot water systems.
BS. 5546 Installation of gas hot water supplies for domestic purposes (2nd Family Gases).
BS. 6798 Installation of gas fired hot water boilers of rated input not exceeding 60 kW.
BS. 6891 Low pressure installation pipes.

The Electricity at Work Regulations, 1989.

The manufacturer's notes must NOT be taken, in any way, as overriding statutory obligations.

IMPORTANT. These appliances are CE certificated for safety and performance. It is, therefore, important that no external control devices, e.g. flue dampers, economisers etc., are directly connected to these appliances unless covered by these Installation and Servicing Instructions or as otherwise recommended by Ideal Stelrad Group in writing. If in doubt please enquire.

Any direct connection of a control device not approved by Ideal Stelrad Group may invalidate the certification and the normal appliance warranty. It could also infringe the Gas Safety Regulations and the above regulations.
SAFE HANDLING OF SUBSTANCES

Care should be taken when handling the boiler insulation panels, which can cause irritation to the skin. No asbestos, mercury or CFCs are included in any part of the boiler or its manufacture.

LOCATION OF BOILER

The boiler must be installed on a flat and vertical wall, capable of adequately supporting the weight of the boiler and any ancillary equipment.

The boiler may be fitted on a combustible wall and insulation between the wall and the boiler is not necessary, unless required by the local authority.

For electrical safety reasons there must be no access from the back of the boiler.

The boiler must not be fitted outside.

Timber Framed Buildings

If the boiler is to be fitted in a timber framed building it should be fitted in accordance with the Institute of Gas Engineering document IGE/UP/7:1998.

Bathroom Installations

This appliance is rated IP20. The boiler may be installed in any room or internal space, although particular attention is drawn to the requirements of the current IEE (BS.7671) Wiring Regulations and, in Scotland, the electrical provisions of the building regulations applicable in Scotland, with respect to the installation of the boiler in a room or internal space containing a bath or shower. For Ireland reference should be made to the current ETCS rules for electrical installations and I.S.813:2002.

If the appliance is to be installed in a room containing a bath or shower then, providing water jets are not going to be used for cleaning purposes (as in communal baths/showers), the appliance can be installed in Zone 3, as detailed in BS.7671.

Compartment Installations

A compartment used to enclose the boiler should be designed and constructed specially for this purpose. An existing cupboard or compartment may be used, provided that it is modified for the purpose. In both cases details of essential features of cupboard / compartment design, including airing cupboard installation, are to conform to the following:

- BS. 6798. (No cupboard ventilation is required - see "Air Supply" for details).
- The position selected for installation MUST allow adequate space for servicing in front of the boiler.
- For the minimum clearances required for safety and subsequent service see the wall mounting template and Frame 2. In addition, sufficient space may be required to allow lifting access to the wall mounting plate.

GAS SUPPLY

The local gas supplier should be consulted, at the installation planning stage, in order to establish the availability of an adequate supply of gas. An existing service pipe must NOT be used without prior consultation with the local gas supplier. The boiler MUST be installed on a gas supply with a governed meter only.

A gas meter can only be connected by the local gas supplier or a Registered Gas Installer. In IE by a Competent Person.

An existing meter should be checked, preferably by the gas supplier, to ensure that the meter is adequate to deal with the rate of gas supply required.

N.B. The principle of the 1:1 gas valve ensures that the Elise range is able to deliver its full output at inlet pressures down to 14mb. However if dynamic pressures below 20mb are experienced ensure this is adequate for ALL other gas appliances in the property.

IMPORTANT.

Installation pipes MUST be fitted in accordance with BS. 6891. In IE refer to I.S.813:2002. Pipework from the meter to the boiler MUST be of an adequate size, i.e. no longer than 20m and not less than 15mm O.D.

The complete installation MUST be tested for gas soundness and purged as described in the above code.

FLUE INSTALLATION

Pluming will occur at the terminal so terminal positions which would cause a nuisance should be avoided.

The flue must be installed in accordance with the recommendations of BS.5440-1:2000. In IE refer to I.S.813:2002.

The following notes are intended for general guidance.

1. The boiler MUST be installed so that the terminal is exposed to external air.
2. It is important that the position of the terminal allows the free passage of air across it at all times.
3. Minimum acceptable spacing from the terminal to obstructions and ventilation openings are specified in Table 3.

4. Where the lowest part of the terminal is fitted less than 2m (6½") above a balcony, above ground or above a flat roof to which people have access, then the terminal MUST be protected by a purpose designed guard. Ensure that the guard is fitted centrally.

Terminal guards are available from boiler suppliers. Ask for TFC Flue Guard Model No. K6 (round plastic-coated). In case of difficulty contact:

Grasslin (UK) Ltd.  Tower House, Vale Rise Tottonbridge.Kent TN9 1TB Fax. +44(0) 01732 354 445 www.ffc.ukco.com

5. The flue assembly shall be so placed or shielded as to prevent ignition or damage to any part of any building.
6. The air inlet/products outlet duct and the terminal of the boiler MUST NOT be closer than 25mm (1") to combustible material. Detailed recommendations on the protection of combustible material are given in BS.5440-1:2000. In IE refer to I.S.813:2002.

IMPORTANT
It is absolutely ESSENTIAL to ensure, in practice, that products of combustion discharging from the terminal cannot re-enter the building or any other adjacent building through ventilators, windows, doors, other sources of natural air infiltration, or forced ventilation / air conditioning.

If this should occur the appliance MUST be turned OFF, labelled as 'unsafe' until corrective action can be taken.

TERMINAL
The terminal assembly can be adapted to accommodate various wall thicknesses. Refer to Frame 14.

AIR SUPPLY
It is NOT necessary to have a purpose-provided air vent in the room or internal space in which the boiler is installed. Neither is it necessary to ventilate a cupboard or compartment in which the boiler is installed, due to the low surface temperatures of the boiler casing during operation; therefore the requirements of BS 6798, Clause 12, and BS 5449:2 may be disregarded. In IE the requirements of I.S.813:2002 may be disregarded.

WATER CIRCULATION SYSTEM
IMPORTANT.
A minimum length of 1 metre of copper pipe MUST be fitted to both flow and return connections from the boiler before connection to any plastic piping.
For the types of system and correct piping procedure see Frames 1, and 3 to 8.
The central heating system should be in accordance with BS.6798 and, in addition, for smallbore and microbore systems, BS.5449.

WATER TREATMENT - see Frame 9
The hot water storage cylinder MUST be of the indirect type and should preferably be manufactured of copper.

Table 1 - Water flow rate and pressure loss

<table>
<thead>
<tr>
<th>Boiler Output (kW)</th>
<th>Pressure Drop Across Boiler (metres water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8</td>
<td>0.5</td>
</tr>
<tr>
<td>11.7</td>
<td>0.9</td>
</tr>
<tr>
<td>14.7</td>
<td>1.1</td>
</tr>
<tr>
<td>17.6</td>
<td>1.3</td>
</tr>
<tr>
<td>20.5</td>
<td>1.5</td>
</tr>
<tr>
<td>23.4</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Graph 1 - Water flow rate and pressure loss

Ecliffe - Installation & Servicing
3 OPEN VENT SYSTEM REQUIREMENTS

The system should be vented directly off the boiler flow pipe, as close to the boiler as possible. The cold feed entry should be inverted and MUST be positioned between the pump and the vent, and not more than 150mm (6") away from the vent connection.

Note. Combined feed and vent pipes may also be fitted.

There should be a minimum height 450mm (18") of open vent above the cistern water level. If this is not possible refer to Frame 5. The vertical distance between the highest point of the system and the feed/expansion cistern water level MUST not be less than 450 mm (18"). The pump must be fitted on the flow side of the boiler.

A suitable pump is a domestic circulator capable of providing a maximum 11°C (20°F) temperature differential across the boiler with the whole of the heating circuit open (e.g. Grundfos UPS 15/50, 15/60 or equivalent). With the minimum flow circuit allowed by the controls the differential must not exceed 25°C (18°C for the H15).

The vertical distance between the pump and feed/expansion cistern MUST comply with the pump manufacturer's minimum requirements, to avoid cavitation. Should these conditions not apply either lower the pump position or raise the cistern above the minimum requirement specified by Ideal Stelrad Group. The isolation valves should be fitted as close to the pump as possible.

4 SCHEMATIC PIPEWORK AND SYSTEM BALANCING

The boiler does not normally need a bypass but at least some radiators on the heating circuit, of load at least 10% of the minimum boiler output, must be provided with twin lockshield valves so that this minimum heating load is always available (see footnote re. thermostatic radiator valves).

Balancing
1. Set the programmer to ON for both CH and HW. Turn the cylinder thermostat down. Close the manual or thermostatic valves on all radiators, leaving the twin lockshield valves (on the radiators referred to above) in the open position. Turn up the room thermostat and adjust these lockshield valves to give boiler flow and return temperatures not more than 20°C apart. These valves should now be left as set.
2. Open all manual or thermostatic radiator valves and adjust the lockshield valves on remaining radiators to give around 11°C temperature drop at each radiator.
3. Turn up the cylinder thermostat and adjust the cylinder balancing valve so that the cylinder achieves a maximum flow consistent with adequate flow to the radiators. Check that with only the domestic hot water loop in circuit a differential temperature of 20°C across the boiler is not exceeded.
4. Adjust room and cylinder thermostats and programmer to NORMAL settings.
5  LOW HEAD AND LARGE SYSTEMS WITH EXTENSIVE PIPE RUNS - OPEN VENT

This arrangement is useful for large systems where radiators at the extremities are difficult to vent. This can lead to pumping over with conventional feed and vent arrangements.

The following conditions MUST be observed:

1. The top of the automatic air vent must be below the cold water level.
2. The static water level (cold) must be at least 200mm above the top of the horizontal flow pipe, fitted as shown. The vent connection MUST NOT be made immediately off the top of the boiler as venting is made less efficient.
3. The maximum practical length of 22mm cold feed pipe should be used in order to reduce the effective volume of hot system water expanding into the feed/expansion cistern to a minimum.

Note. The pump manufacturers’ minimum requirements must be complied with.

6  SEALED SYSTEM REQUIREMENTS

Notes:

a. The method of filling, refilling, topping up or flushing sealed primary hot water circuit from the mains via a temporary hose connection is only allowed if acceptable to the local water authority.

b. When installing the filling device, it must be connected as shown to fully comply with the water regulations. This may involve the fitting of an additional WRAS approval isolator valve to the mains supply.

1. General
   a. The installation must comply with the requirements of BS. 6798 and BS. 5449.
   b. The installation should be designed to work with flow temperatures of up to 82°C.
   c. All components of the system, including the heat exchanger of the indirect cylinder, must be suitable for a working pressure of 3 bar (45lb/in²) and temperature of 110°C. Care should be taken in making all connections so that the risk of leakage is minimised.

2. Safety Valve
   A spring loaded safety valve complying with the relevant requirements of BS. 6759 must be fitted in the flow pipe as close to the boiler as possible and with no intervening valve or restriction. The valve should have the following features:

   a. A non-adjustable preset lift pressure not exceeding 3 bar (45lb/in²).
   b. A manual testing device.
   c. Provision for connection of a discharge pipe. The valve or discharge pipe should be positioned so that the discharge of water or steam cannot create a hazard to the occupants of the premises or cause damage to electrical components and wiring.

3. Pressure Gauge
   A pressure gauge covering at least the range 0-4 bar (0-60 lb/in²) must be fitted to the system. The gauge should be easily seen from the filling point and should preferably be connected at the same point as the expansion vessel.
7 SEALED SYSTEM REQUIREMENTS - continued

4. Expansion Vessel
   a. A diaphragm type expansion vessel must be connected to a point close to the inlet side of the pump, the connecting pipe being not less than 15 mm (1/2" nominal) size and not incorporating valves of any sort.
   b. The vessel capacity must be adequate to accept the expansion of the system water when heated to 110°C (230°F).
   c. The charge pressure must not be less than the static water head above the vessel. The pressure attained in the system when heated to 110°C (230°F) should be at least 0.35 bar (5 lb/in²) less than the lift pressure of the safety valve. For guidance on vessel sizing refer to the table in Frame 8. For further details refer to BS. 5449, BS. 7074:1 and the British Gas Corporation publication ‘Material and Installation Specifications for Domestic Central Heating and Hot Water’. For IE refer to the current edition of I.S.813.

5. Cylinder
   The cylinder must be either of the indirect coil type or a direct cylinder fitted with an immersion calorifier which is suitable for operating on a gauge pressure of 0.35 bar (5 lb/in²) in excess of the safety valve setting. Single feed indirect cylinders are not suitable for sealed systems.

6. Make-up Water
   Provision must be made for replacing water loss from the system, either:
   a. From a manually filled make-up vessel with a readily visible water level. The vessel should be mounted at least 150 mm (6") above the highest point of the system, and be connected through a non-return valve to the system, fitted at least 300 mm (12") below the make-up vessel on the return side of the domestic hot water cylinder or radiators.
   or
   b. Where access to a make-up vessel would be difficult by pre-pressurisation of the system. Refer to ‘Filling’, below.

7. Mains Connection
   There must be no direct connection to the mains water supply or to the water storage tank supplying domestic water, even through a non-return valve, without the approval of the local water authority.

8. Filling
   The system may be filled by one of the following methods:
   a. Through a cistern, used for no other purposes, via a ball valve permanently connected directly to a service pipe and/or a cold water distributing pipe. The static head available from the cistern should be adequate to provide the desired initial system design pressure. The cold feed pipe from the cistern should include a non-return valve and a stop valve with an automatic air vent connected between them, the stop valve being located between the system and the automatic air vent. The stop valve may remain open during normal operation of the system if automatic water make-up is required.
   b. Through a self-contained unit comprising a cistern, pressure booster pump (if required) and, if necessary, an automatic pressure reducing valve and flow restrictor. The cistern should be supplied through a temporary connection from a service pipe or cold water distributing pipe. This unit may remain permanently connected to the heating system to provide limited automatic water make-up. Where the temporary connection is supplied from a service pipe or distributing pipe which also supplies other draw-off points at a lower level then a double check valve shall be installed upstream of the draw-off point.
   c. Through a temporary hose connection from a draw-off tap supplied from a service pipe under mains pressure. Where the mains pressure is excessive a pressure reducing valve shall be used to facilitate filling.

   The following fillings shall form a permanent part of the system and shall be fitted in the order stated:
   A stop valve complying with the requirements of BS. 1010, Part 2 (the hose from the draw-off tap shall be connected to this fitting).
   A test cock.
   A double check valve of an approved type.

   For guidance on vessel sizing refer to the table in Frame 8.
   For further details refer to BS. 5449, BS. 7074:1 and the British Gas Corporation publication ‘Material and Installation Specifications for Domestic Central Heating and Hot Water’. For IE refer to the current edition of I.S.813.

5. Cylinder
   The cylinder must be either of the indirect coil type or a direct cylinder fitted with an immersion calorifier which is suitable for operating on a gauge pressure of 0.35 bar (5 lb/in²) in excess of the safety valve setting. Single feed indirect cylinders are not suitable for sealed systems.

6. Make-up Water
   Provision must be made for replacing water loss from the system, either:
   a. From a manually filled make-up vessel with a readily visible water level. The vessel should be mounted at least 150 mm (6") above the highest point of the system, and be connected through a non-return valve to the system, fitted at least 300 mm (12") below the make-up vessel on the return side of the domestic hot water cylinder or radiators.
   or
   b. Where access to a make-up vessel would be difficult by pre-pressurisation of the system. Refer to ‘Filling’, below.

7. Mains Connection
   There must be no direct connection to the mains water supply or to the water storage tank supplying domestic water, even through a non-return valve, without the approval of the local water authority.

8. Filling
   The system may be filled by one of the following methods:
   a. Through a cistern, used for no other purposes, via a ball valve permanently connected directly to a service pipe and/or a cold water distributing pipe. The static head available from the cistern should be adequate to provide the desired initial system design pressure. The cold feed pipe from the cistern should include a non-return valve and a stop valve with an automatic air vent connected between them, the stop valve being located between the system and the automatic air vent. The stop valve may remain open during normal operation of the system if automatic water make-up is required.
   b. Through a self-contained unit comprising a cistern, pressure booster pump (if required) and, if necessary, an automatic pressure reducing valve and flow restrictor. The cistern should be supplied through a temporary connection from a service pipe or cold water distributing pipe. This unit may remain permanently connected to the heating system to provide limited automatic water make-up. Where the temporary connection is supplied from a service pipe or distributing pipe which also supplies other draw-off points at a lower level then a double check valve shall be installed upstream of the draw-off point.
   c. Through a temporary hose connection from a draw-off tap supplied from a service pipe under mains pressure. Where the mains pressure is excessive a pressure reducing valve shall be used to facilitate filling.

   The following fillings shall form a permanent part of the system and shall be fitted in the order stated:
   A stop valve complying with the requirements of BS. 1010, Part 2 (the hose from the draw-off tap shall be connected to this fitting).
   A test cock.
   A double check valve of an approved type.

   For guidance on vessel sizing refer to the table in Frame 8.
   For further details refer to BS. 5449, BS. 7074:1 and the British Gas Corporation publication ‘Material and Installation Specifications for Domestic Central Heating and Hot Water’. For IE refer to the current edition of I.S.813.
### GENERAL

#### 8 SEaled System Requirements - continued

<table>
<thead>
<tr>
<th>Safety valve setting</th>
<th>3.0 bar</th>
<th>2.5 bar</th>
<th>2.0 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vessel charge and initial system pressure</td>
<td>0.5 bar</td>
<td>1.0 bar</td>
<td>1.5 bar</td>
</tr>
<tr>
<td></td>
<td>0.5 bar</td>
<td>1.0 bar</td>
<td>1.5 bar</td>
</tr>
<tr>
<td>Total water content of system litres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2.1</td>
<td>2.7</td>
<td>3.9</td>
</tr>
<tr>
<td>50</td>
<td>4.2</td>
<td>5.4</td>
<td>7.8</td>
</tr>
<tr>
<td>75</td>
<td>6.3</td>
<td>8.2</td>
<td>11.7</td>
</tr>
<tr>
<td>100</td>
<td>8.3</td>
<td>10.9</td>
<td>15.6</td>
</tr>
<tr>
<td>125</td>
<td>10.4</td>
<td>13.6</td>
<td>19.5</td>
</tr>
<tr>
<td>150</td>
<td>12.5</td>
<td>16.3</td>
<td>23.4</td>
</tr>
<tr>
<td>175</td>
<td>14.6</td>
<td>19.1</td>
<td>27.3</td>
</tr>
<tr>
<td>200</td>
<td>16.7</td>
<td>21.8</td>
<td>31.2</td>
</tr>
<tr>
<td>225</td>
<td>18.7</td>
<td>24.5</td>
<td>35.1</td>
</tr>
<tr>
<td>250</td>
<td>20.8</td>
<td>27.2</td>
<td>39.0</td>
</tr>
<tr>
<td>275</td>
<td>22.9</td>
<td>30.0</td>
<td>42.9</td>
</tr>
<tr>
<td>300</td>
<td>25.0</td>
<td>32.7</td>
<td>46.8</td>
</tr>
<tr>
<td>Multiplying factors for other system volumes</td>
<td>0.0833</td>
<td>0.109</td>
<td>0.156</td>
</tr>
<tr>
<td></td>
<td>0.094</td>
<td>0.134</td>
<td>0.237</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expansion vessel volume litres</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8</td>
<td>5.0</td>
</tr>
<tr>
<td>5.6</td>
<td>10.0</td>
</tr>
<tr>
<td>8.4</td>
<td>15.0</td>
</tr>
<tr>
<td>11.3</td>
<td>20.0</td>
</tr>
<tr>
<td>14.1</td>
<td>25.0</td>
</tr>
<tr>
<td>16.9</td>
<td>30.0</td>
</tr>
<tr>
<td>19.7</td>
<td>35.0</td>
</tr>
<tr>
<td>22.6</td>
<td>40.0</td>
</tr>
<tr>
<td>25.4</td>
<td>45.0</td>
</tr>
<tr>
<td>28.2</td>
<td>50.0</td>
</tr>
<tr>
<td>31.0</td>
<td>55.0</td>
</tr>
<tr>
<td>33.9</td>
<td>60.0</td>
</tr>
</tbody>
</table>

### 9 Water Treatment

The Elise boiler range have an ALUMINIUM alloy heat exchanger

**IMPORTANT.** The application of any other treatment to this product may render the guarantee of Ideal Stelrad Group invalid.

**Ideal Stelrad Group** recommend water treatment in accordance with the Benchmark Guidance Notes on Water Treatment in Central Heating systems.

**Ideal Stelrad Group** recommend the use of FERNOX-COPAL or MB1,GE Betz Sentinel X100 OR Salamander Corrosion Guard inhibitors and associated water treatment, which must be used in accordance with the manufacturers' instructions.

For further information contact:

- **Fernox Manufacturing Co. Ltd**
  - Forsyth Road
  - Sheerwater
  - Woking
  - Surrey
  - GU21 5RZ
  - Tel: +44 (0) 1799 521133

- **Sentinel Performance Solutions**
  - The Heath Business & Technical Park
  - Runcorn
  - Cheshire
  - WA7 4QX
  - Tel: 0800 389 4670
  - www.sentinel-solutions.net

- **Salamander Engineering Ltd**
  - Unit 24
  - Reddicap Trading Estate
  - Sutton Coldfield
  - West Midlands
  - B75 7BU
  - Tel: +44 (0) 121 3780952

**Notes**

1. **It is most important that the correct concentration of the water treatment product is maintained in accordance with the manufacturers’ instructions.**
2. **If the boiler is installed in an existing system any unsuitable additives MUST be removed by thorough cleansing.**
   - BS. 7593:1992 details the steps necessary to clean a domestic central heating system.
3. **In hard water areas, treatment to prevent lime scale may be necessary - however, the use of artificially softened water is NOT permitted.**
4. **Under no circumstances should the boiler be fired before the system has been thoroughly flushed.**

*Elise - Installation & Servicing* 13
10. Flue manifold.
11. Interpanel.
13. Combustion chamber.
15. Heat exchanger.
16. Injector & housing.
17. Venturi assy.
18. Fan assy.
20. Gas control valve assy.
22. Orifice plate.
23. Flue thermistor.
24. Control thermistor.
25. Overheat thermostat.
26. Ignition electrode.
27. Flow pipe.
29. Bottom casing panel.
30. Sump cover plate.
31. Sealing panel.
32. Front casing panel.
33. Data badge.
34. Control thermistor.
35. Overheat thermostat.
36. Ignition electrode.
37. Flow pipe.
38. Return pipe.
39. Bottom casing panel.
40. Sump cover plate.
41. Sealing panel.
42. Front casing panel.
43. Control thermistor.
44. Overheat thermostat.
45. Ignition electrode.
46. Flow pipe.
47. Return pipe.
48. Bottom casing panel.
49. Sump cover plate.
50. Sealing panel.
51. Front casing panel.
52. Control thermistor.
53. Overheat thermostat.
54. Ignition electrode.
55. Flow pipe.
56. Return pipe.
57. Bottom casing panel.
58. Sump cover plate.
59. Sealing panel.
60. Front casing panel.
61. Control thermistor.
62. Overheat thermostat.
63. Ignition electrode.
64. Flow pipe.
65. Return pipe.
66. Bottom casing panel.
67. Sump cover plate.
68. Sealing panel.
69. Front casing panel.
70. Control thermistor.
71. Overheat thermostat.
72. Ignition electrode.
73. Flow pipe.
74. Return pipe.
75. Bottom casing panel.
76. Sump cover plate.
77. Sealing panel.
78. Front casing panel.
79. Control thermistor.
80. Overheat thermostat.
81. Ignition electrode.
82. Flow pipe.
83. Return pipe.
84. Bottom casing panel.
85. Sump cover plate.
86. Sealing panel.
87. Front casing panel.
88. Control thermistor.
89. Overheat thermostat.
90. Ignition electrode.
91. Flow pipe.
92. Return pipe.
93. Bottom casing panel.
94. Sump cover plate.
95. Sealing panel.
96. Front casing panel.
11 UNPACKING

The boiler is supplied fully assembled in one Pack A, together with a telescopic flue assembly for lengths up to 495mm, rear or side flue outlet, in Pack B.

Unpack and check the contents.

Pack A Contents
A. The boiler
B. Wall mounting template on cardboard
C. Wall mounting plate
D. 1 year guarantee form
E. These Installation & Servicing/ User’s instructions
F. Hardware pack

Hardware Pack
A. 50mm x No.14 wood screws - 3 off
B. Wall plugs (TP2B) - 3 off
C. Push-in caps - 6 off (Discard - not required)
D. Mains connector - 1 off

B Pack Contents
A. Telescopic flue terminal
B. Flue turret
C. Screws (2 off)
D. Sealing Tape

12 PACKAGING REMOVAL

1. Ensure the boiler is stood correctly, as marked on the carton.
2. Cut and remove the strapping.
3. Fold back the top flaps to gain access to the wall mounting plate, literature and wall mounting card template.
4. Remove the instructions and read thoroughly before unpacking the product.
5. When ready for installation lift off the outer sleeve.
6. Remove the top protection packing/template and save for further use.
7. Remove the two packaging ends.
8. Remove the hardware pack from under the pipes and keep in a safe place.
## INSTALLATION

### 13 FRONT AND BOTTOM PANEL REMOVAL

1. To remove the front panel remove the 2 screws from the bottom panel.
2. Lift the panel up and off the top pegs.
3. To remove the bottom panel remove the 2 screws.
4. Pull the RH side of the panel down. Slide it to the right and withdraw.

### 14 DETERMINING THE FLUE LENGTH AND FLUE PACKS REQUIRED

**IMPORTANT:** The boiler MUST be installed in a vertical position.

**NOTE:** Only use water as a lubricant during assembly.

**Dimension X** - Wall thickness.
**Dimension L** - Wall thickness plus boiler spacing.
**Dimension S** - Stand-off frame depth = 33mm.

#### FLUE KITS

- **Pack B**: supplied as standard.
- **Finishing Kit**: supplied as an optional extra.
- **Pack D**: optional extension kit for side flue or rear flue outlet.

Refer to ‘Flue Extension Ducts’

**Note. MAXIMUM FLUE LENGTHS:**

- **HORIZONTAL FLUE**: 6M
- **ROOF FLUE KIT**: 7.5M
- **POWERED VERTICAL FLUE KIT**: 5m primary and 17m secondary is a typical maximum length.

For alternative details refer to Powered Vertical Instructions.

**90° ELBOW KIT 60/100 (EQUIVALENT FLUE LENGTH RESISTANCE = 1M)**

**45° ELBOW KIT 60/100 (EQUIVALENT FLUE LENGTH RESISTANCE = 0.6M)**

**60/80 TWIN FLUE KIT - 1M TOTAL AIR PLUS FLUE DUCT**: Ref Graph within Kit Instructions

**MINIMUM HORIZONTAL FLUE LENGTHS**

- **TELESCOPIC TERMINAL = 370MM**
- **ONE PIECE TERMINAL = 285MM**

**Notes.**

1. When extension ‘D’ packs are used the flue duct MUST be inclined at 1.5 degrees to the horizontal to allow condensate to drain back into the boiler and out through the condensate drain.
2. If the telescopic ‘B’ pack or horizontal flue terminal (600 long) only are used, they may be mounted horizontally. The 1.5 degrees is taken care of by the inclination of the flue within the air pipe.
3. If the boiler is to be installed with downward piping routed behind the boiler then the optional stand-off kit should be used. Care must be taken when cutting the ducts and marking the wall to suit this condition.
4. It is recommended that a support bracket is fitted for every 1 metre of extension pipe used and a bracket should be used at every joint, to ensure pipes are held at the correct angle. If a slip joint coupling is to be used then a bracket should be used to secure the collar.

<table>
<thead>
<tr>
<th>Total Flue length dimension (measuring from C.L. of turret to outside wall)</th>
<th>Flue</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Rear flue dim. X+160</strong></td>
<td><strong>Side flue dim. L+195</strong></td>
</tr>
<tr>
<td>Up to 985 mm</td>
<td>Up to 995 mm</td>
</tr>
<tr>
<td>Up to 1545 mm</td>
<td>Up to 1545 mm</td>
</tr>
<tr>
<td>Up to 2495 mm</td>
<td>Up to 2495 mm</td>
</tr>
<tr>
<td>Up to 3445 mm</td>
<td>Up to 3445 mm</td>
</tr>
<tr>
<td>Up to 4395 mm</td>
<td>Up to 4395 mm</td>
</tr>
<tr>
<td>Up to 5345 mm</td>
<td>Up to 5345 mm</td>
</tr>
<tr>
<td>Up to 6000 mm</td>
<td>Up to 6000 mm</td>
</tr>
</tbody>
</table>
15 FLUE ASSEMBLY - Exploded View

An optional flue duct extension kit is required for wall thicknesses greater than:

- Side: 395mm
- Rear: 395mm

NOTE: Only use water as a lubricant during assembly.

LEGEND
1. Duct assembly.
2. Flue turret.
3. Turret gasket.
4. M5 x 10 pozi screw.
5. Turret clamp.

16 WALL MOUNTING TEMPLATE

The wall mounting template is located on the internal top protective packaging.

NOTE. The template shows the positions of the fixing holes and the rear flue hole centre for standard installation. Care MUST be taken to ensure the correct holes are drilled.

1. Tape template into the selected position. Ensure squareness by hanging a plumbline as shown.
2. If fitting a side flue extend the flue centre line onto the side wall and measure in 155mm for standard installation.

NOTE. If using stand-off kit distance increases to 188mm.
3. Mark onto the wall the following:
   a. The wall mounting plate screw positions (choose one from each side with preference to top holes).
   b. The position of the flue duct hole (see diagram below).

NOTE. Mark the centre of the hole as well as the circumference.
4. Remove the template from the wall.

*“H” = Distance in metres from side of the boiler to the side wall
Note. If wall thickness is greater than 300mm then dimension “H” must be reduced by the same amount and the offset may be adjusted accordingly.
17 PREPARING THE WALL

IMPORTANT. Ensure that, during the cutting operation, masonry falling outside of the building does not cause damage or personal injury.

1. Cut the flue hole (preferably with a 5" core boring tool), ensuring that the hole is square to the wall. Both wall faces immediately around the cut hole should be flat.
2. Drill 3 holes with a 7.5mm / 8mm masonry drill and insert the plastic plugs provided, for the wall mounting plate and the jacking screw plate.

Note.
If using the stand-off kit then drill 4 holes (choosing one from each group but not the jacking screw).
3. Locate 2 No.14 x 50mm screws in the piping frame (one at each side, in any of the 3 holes provided at each side) and screw home.

Note.
If using the stand-off kit then locate the stand-off channel and screw home.

18 SETTING THE FLUE - REAR
Wall thicknesses of 210 to 435mm

Notes.
a. If using the extension ducts go to Frame 20.
b. If the stand-off frame is used it is essential to add 33mm to dimension X.
c. For shorter flue requirements less than 210mm, use non telescopic B Pack.

1. Measure and note wall thickness X. Refer to Frame 14.
2. Add 75mm to dimension X and set telescopic flue length as indicated in drawing.
3. Using a 3.5mm drill bit, drill two holes in outer air duct taking care not to pierce plastic inner flue.
4. Fix to length using self tappers provided.
5. Seal outer air duct using the tape provided.

19 SETTING THE FLUE - SIDE
Wall thicknesses of 170 to 395mm

Notes.
a. If using the extension ducts go to Frame 20.
b. For shorter flue requirements use non telescopic B Pack.

1. Measure and note wall thickness X. Refer to Frame 14.
2. Measure distance from side of boiler to inside of wall and add to wall thickness X=L. Refer to Frame 14.
3. Add 115mm to dimension L and set telescopic flue length as indicated in drawing.
4. Using a 3.5mm drill bit, drill two holes in outer air duct taking care not to pierce plastic inner flue.
5. Fix to length using self tappers provided.
6. Seal outer air duct using the tape provided.
**INSTALLATION**

**20 FLUE EXTENSION DUCTS - For total flue lengths greater than 595mm**

Pack D Flue extension duct kit contents.

**Note.** Only use water as lubricant during assembly.

1. A maximum of 6 extension ducts (one suitably cut) plus the standard flue duct may be used together.

2. Flue extensions of greater length than 1m (39") should be supported with the bracket provided, suitably adjusted. Refer to Frame 20 & 26.

**21 FLUE EXTENSION DUCTS - continued**

**Use a maximum of 6m extended flue ONLY**

**General arrangement**

1. A maximum of 6 extension ducts (one suitably cut) plus the standard flue duct may be used together.

2. Flue extensions of greater length than 1m (39") should be supported with the bracket provided, suitably adjusted. Refer to Frame 20 & 26.

**22 FITTING THE KIT**

Because of the flexibility of the telescopic flue terminal it is not always necessary to cut an extension pack.

1. Measure the total flue length from the centre of the boiler outlet to the outside wall.

2. Subtract 70mm from this dimension.

3. Subtract 950mm for each 'D' pack to be used.

4. If the remainder Y is 300mm - 525mm this can be taken up by the adjustment in the telescopic flue.

5. If the remainder Y is 525mm - 950mm it will be necessary to cut a 'D' pack to Y - 400mm.

6. If the remainder Y is under 300mm, shorten the previous 'D' pack to 400mm and adjust the telescopic terminal.

7. Measure and mark the length on the flue, to ensure a square cut mark the flue all the way around and cut to length.
23 CONDENSATE DRAIN


The condensate drain provided on the boiler must be connected to a drainage point, preferably within the building.

Ensure that the condensate trap is full of water before commissioning the boiler. Refer to Frame 27.

The routing of the drain must be made to allow a minimum fall of 1 in 20 away from the boiler, throughout its length.

The drainage pipework must be arranged so that obstruction (e.g. through freezing) of external drainage pipe does not give rise to spillage within the dwelling.

IMPORTANT. If excessive external pipework cannot be avoided an additional siphon kit and insulation are recommended, in order to prevent possible freezing.

All pipework and fittings in the condensate drain system must be made of plastic. No other materials may be used.

The drain outlet on the boiler is standard 21.5mm overflow pipe. This size must not be reduced in any part of its length.

A plastic cap is fitted to the end of the condensate drain adapter this must be removed before connection is made.

24 CONDENSATE PIPE TERMINATION CONFIGURATIONS

Note. ALL EXTERNAL PIPE RUNS MUST BE INSULATED - MAXIMUM LENGTH 3M EXTERNAL

1. INTERNAL TO SINK WASTE UPSTREAM OF SINK WASTE TRAP

2. INTERNAL TO SINK WASTE DOWNSTREAM OF SINK WASTE TRAP (PREFERRED METHOD)
3. INTERNAL CONNECTION TO SOIL AND VENT STACK

Termination in to a down pipe can take place providing it can be confirmed that the down pipe is part of a combined waste and rain water system.

* Make connection to SVP using a solvent welded saddle

4. TERMINATION TO SOAK AWAY

5. TERMINATION TO DRAIN / GULLEY
26 INSTALLATION

27 CONNECTING THE FLUE TO THE BOILER

Note.
Before fitting the flue turret fill the condensate trap within the boiler by pouring a cupful of water into flue outlet A.
Make sure the plastic cap is removed from the end of the condensate drain adapter.
Take care to ensure that the water is only poured into the flue outlet, and does not spill into the boiler casing.

1. Locate the flue into the turret.
2. Insert the flue assembly through the prepared hole in the wall. Push through and pull back to seal against outside wall face.
3. Locate the flue turret on the top of the boiler, ensuring that the turret gasket is in place. Also ensure the turret is located concentric with the flue aperture on the boiler top panel. Check that the flue seal (at A) located in the top of the flue manifold is secure and giving an effective seal.
4. Secure the flue turret on top of the boiler by inserting the open ends of the turret clamp under the 2 studs and fixing it in the middle with the single M5 x 10mm pozi-hex screw provided.
5. Flues over 1 metre long.
Fix the flue support bracket to the wall, using the wall plug and wood screw. For standard installations use the short wood screw.
If the stand-off option is used, secure the support bracket using the spacer bracket and long wood screw.
NB. The space bracket will utilise one fixing hole only whilst used in conjunction with the stand-off option.
28 FITTING THE OPTIONAL ROOF FLUE KIT (Flat or Pitched)

Note.
A flat or pitched roof flashing plate (not supplied) is required before proceeding with the installation of this kit.

This kit is suitable for both flat and pitched roof terminations, using a concentric flue to run vertically from the top of the boiler and terminating above roof level.

Connection to the top of the boiler is made using both a separately supplied vertical connector and a 80/125 adaptor.

WEATHER PROOFING
Where the flue passes through the roof line an adequate seal must be made. This is achieved by using either:
- Flat roof weather collar
- Universal weather collar.

ACCESSORIES
Flue Duct Extension Kits are available for flue lengths extending beyond 1m. These packs contain 1m extension ducts and may be cut to the desired length.

If the offset vertical option is used an elbow Kit is required. For a full accessories list refer to page 7, Optional Extras and Frame 31, Flue Arrangement.

29 ROOF FLUE KIT CONTENTS / OPTIONS

- Flue Terminal UIN 203132
- Weather Collar - Flat Roof UIN 152259
- Vertical connector UIN 203135
- 90° elbow UIN 203130
- 45° elbow UIN 203131
- Roof Flue Extension Duct UIN 203129
- Flue duct support
- Weather Collar - Tile Roof UIN 152258

Elise - Installation & Servicing
30 FLUE TERMINAL POSITION

The terminal should be positioned so that products of combustion can safely disperse at all times. Plumbing may occur at the termination so, where possible, terminal positions where this could cause a nuisance should be avoided.

Minimum dimensions are shown below.

<table>
<thead>
<tr>
<th>Terminal Position</th>
<th>Minimum Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directly below an opening, air brick, windows, etc.</td>
<td>300 mm</td>
</tr>
<tr>
<td>Below plastic / painted gutters</td>
<td>300 mm</td>
</tr>
<tr>
<td>Painted surface</td>
<td>300 mm</td>
</tr>
<tr>
<td>Below eaves or balcony</td>
<td>500 mm</td>
</tr>
</tbody>
</table>
31 FLUE ARRANGEMENT

Note.
The equivalent flue length resistance of the elbow kits are:
90° elbow kit = 1m
45° elbow kit = 0.6m
32 ASSEMBLING THE ROOF FLUE KIT

Determine the correct height that the flue should terminate above the roof. If after calculating or measuring the overall flue height from the top of the boiler, it is necessary to cut both pipes of assembly A, then ensure they are cut equally leaving the inner flue tube longer than the outer air tube as supplied.

Ensure the cut pipe ends are free from any burrs.

1. Position the roof flashing plate (supplied separately) over the hole cut in the roof and insert flue terminal from the roof end.

2. Push fit the vertical connector (supplied separately) into the boiler flue connection and retain with the turret clamp and securing screw (supplied with the boiler). ENSURING THE GASKETS IN THE BOILER FLUE OUTLET ARE CORRECTLY FITTED.

3. "Push" fit extension duct (if required (supplied separately)) into vertical connector.

4. If the last extension duct requires cutting, measure 'X', the distance (outer ducts), between the duct and the terminal and add 100 mm to this dimension. This gives the length of the last extension duct.

Note. Check the position of the inner flue duct relative to the outer duct on the assembled extension duct(s) and ensure the terminal flue duct is cut longer than the air duct to ensure engagement in the final flue duct seal.

5. Finally ensure the roof flashing plate is correctly sealed to the roof.
33 GAS CONNECTION

IMPORTANT. The gas service cock is sealed with a non-metallic fibre washer seal so must not be overheated when making capillary connections.

Refer to Frame 2 for details of the position of the gas connection.

N.B. The principle of the 1:1 gas valve ensures that the Elise range is able to deliver its full output at inlet pressures down to 14mb. However if dynamic pressures below 20mb are experienced ensure this is adequate for ALL other gas appliances in the property.

34 BOILER WATER CONNECTIONS

The boiler flow and return pipes are supplied fitted to the boiler and ready for top connection.

Note. For heating loads in excess of 60 000 Btu/h use 28mm x 22mm connectors to connect the boiler flow and return pipes to 28mm.

TOP CONNECTION

Connect the system pipework to the boiler flow and return pipes.

Note. The front panel is not fitted at this stage.

35 ELECTRICAL CONNECTIONS

WARNING. This appliance MUST be earthed.

A mains supply of 230 V – 50 Hz is required.

All external controls and wiring MUST be suitable for mains voltage.

The fuse rating should be 3 A.

Wiring external to the boiler MUST be in accordance with the current I.E.E. (BS.7671) Wiring Regulations and any local regulations.

Wiring should be 3 core PVC insulated cable NOT LESS than 0.75 mm² (24 x 0.2mm) and to BS. 6500, Table 16.

For IE reference should be made to the current ETCI rules for electrical installations.

Connection must be made in a way that allows complete isolation of the electrical supply - such as a double pole switch having a 3mm (1/8") contact separation in both poles, or a plug and socket serving only the boiler and system controls. The means of isolation must be accessible to the user after installation.
36 INTERNAL WIRING

A pictorial wiring diagram is shown in Frame 37.

The mains lead connector is pre-fitted. This must be removed to allow wiring.

1. Route the mains cable into the bottom LHS rear of the casing. If using the stand-off kit then route through the grommet.
2. Wire a permanent live supply into the 5-way remote plug terminals L3, N and m.
   IMPORTANT. A permanent live is ESSENTIAL in order for the advanced diagnostic controls to function correctly.
3. Wire the switched live supply into L2 or connect L1 and L2 via external control switching, as shown in Frame 32. In either case, remove the wire link fitted L1 to L2.
4. Secure the mains lead with the cable clamp.
5. Connect the mains lead connector. Ensure it is fully located.

Note.
Ensure that the lengths of the current carrying conductors are shorter than the earth conductor so that if the cable slips in its anchorage the current carrying conductors become taut before the earth conductor.

Incoming mains wiring detail

Remove link when connecting external programmer.

Mains Connector
(supplied in hardware pack)

Socket
(fixed to boiler)
Elise - Installation & Servicing
39 EXTERNAL ELECTRICAL CONTROLS

Wiring external to the boiler MUST be in accordance with the current I.E.E. (BS.7671) Wiring Regulations and any local regulations.

For IE reference should be made to the current ETCI rules for electrical installations.

The fuse should be 3A.

Room Thermostat

If the thermostat has a neutral connection use it. (It provides for more energy efficient operation by reducing switching temperature differentials.)

Frost Protection

If parts of the pipework run outside the house or if the boiler will be left off for more than a day or so then a frost thermostat should be wired into the system. This is usually done at the programmer, in which case the programmer selector switches are set to OFF and all other controls MUST be left in the running position.

The frost thermostat should be sited in a cold place but where it can sense heat from the system.

If the boiler is installed in a garage it may be necessary to fit a pipe thermostat, preferably on the return pipework.

Important. Ensure that the frost thermostat is wired so that the system pump and/or external diverter valve is energised, as appropriate.

Designation of the terminals will vary but the programmer and thermostat manufacturers’ leaflets will give full details.

Diagram A shows an application to boilers fitted with a room thermostat only.

Diagrams B and C show applications to boilers fitted with alternative time controls.

Earths are not shown for clarity but MUST NEVER BE OMITTED.

40 COMMISSIONING AND TESTING

A. ELECTRICAL INSTALLATION

1. Checks to ensure electrical safety should be carried out by a competent person.

2. ALWAYS carry out the preliminary electrical system checks, i.e. earth continuity, polarity, resistance to earth and short circuit, using a suitable test meter.

WARNING. Whilst effecting the required gas soundness test and purging air from the gas installation, open all windows and doors, extinguish naked lights and DO NOT SMOKE.

B. GAS INSTALLATION

1. The whole of the gas installation, including the meter, should be inspected and tested for soundness and purged in accordance with the recommendations of BS. 6891. In IE refer to I.S. 813:2002.

2. Purge air from the gas installation by the approved methods only.

WARNING. Whilst effecting the required gas soundness test and purging air from the gas installation, open all windows and doors, extinguish naked lights and DO NOT SMOKE.
41 INITIAL LIGHTING

1. Check that the system has been filled and that the boiler is not air locked.

Note.
It is important the burner is not operated before the system is fully vented of air. If it is necessary to operate the appliance pump to assist venting of the air this must be done with the gas service cock turned off.

2. Check that all drain cocks are closed and any valves in the flow and return are open.

3. Check the electrical supply is off.

4. Ensure the boiler sealing panel is fitted.

5. Check the gas service cock is open.

6. Check that the boiler on/off switch (A) is OFF.

7. Slacken the screw in the inlet pressure test point (G) and connect a gas pressure gauge via a flexible tube.

8. Switch the electricity supply ON and check all external controls are calling for heat.

9. Set the boiler thermostat knob (B) to position 6 and switch the boiler on/off switch (A) to ON. The boiler control should now go through its ignition sequence until the burner is established.

10. If the boiler does not light after 3 attempts the fault codes 'L' 'F' will be displayed. Press the reset button (E); the boiler will then repeat its ignition sequence. When the burner is established the WHITE burner ON neon (D) will be permanently illuminated

11. Ensure that with the boiler operating the dynamic gas pressure is able to obtain maximum output. Refer to Table 2.

N.B. The principle of the 1:1 gas valve ensures that the Elise range is able to deliver its full output at inlet pressures down to 14mb. However if dynamic pressures below 20mb are experienced ensure this is adequate for ALL other gas appliances in the property.

IMPORTANT.
The gas input to the burner is regulated by the gas valve according to the air flow produced by the fan. It is NOT user-adjustable. Any interference to sealed settings on the gas valve will adversely affect operation and render our warranty void.

12. Switch OFF the boiler on/off switch.

13. Remove the pressure gauge and tube. Tighten the sealing screw in pressure test point. Ensure a gas tight seal is made.

14. Refit the boiler front panel and bottom panel.

THE DISPLAY
The user control has one neon and one display to inform the user about the status: the display will show the status of the boiler and the neon will show the status of the flame. If no flame is detected the neon is blinking. When the flame is detected the neon will be lit permanently.

Below is a list with display function in normal operation.

- Standby. No demand for heat present.
- Boiler is active for central heating.
- Boiler is in lockout for a specific error. The display will be blinking, alternating with a number or letter to show which error is detected.
- Boiler is in lockout for a specific error. The display will be blinking, alternating with a number or letter to show which error is detected.
- Boiler frost protection.

Note: Boiler frost protection occurs at a temperature less than 3 degrees. The boiler will fire.
**INSTALLATION**

### 42 GENERAL CHECKS

Make the following checks for correct operation:

1. **Central Heating**
   - The correct operation of ANY programmer and all other system controls should be proved. Operate each control separately and check that the main burner or circulating pump, as the case may be, responds.
   - Ensure the external controls are calling for heat.
   - After ignition the display should read: c. white neon on

2. **Gas Rate**
   - Operate the boiler for 10 minutes. Check the boiler gas rate (see Table 2), ensuring the boiler is at full output whilst measurements are recorded.

3. **Water Circulation System**

<table>
<thead>
<tr>
<th>Knob Setting</th>
<th>Flow Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Min</td>
<td>30</td>
</tr>
<tr>
<td>Max</td>
<td>82</td>
</tr>
</tbody>
</table>

* The temperatures quoted alongside are approximate, and vary between installations.

**Note.** Fernox Superfloc, Sentinel X300 (new systems) or X400 (existing systems) flushing solutions should be used during the flushing procedure. Refer to Frame 9.

a. With the system HOT examine all water connections for soundness.

b. With the system still HOT, turn off the gas, water and electricity supplies to the boiler and drain down to complete the flushing process.

c. Refill and vent the system, add inhibitor (see Frame 9), clear all air locks and again check for water soundness. Adhere the water treatment warning label, supplied in the hardware pack, in a prominent position on the system, to prevent the use of incorrect water treatment additives:

d. Balance the system. Refer to Frame 4.

4. Check the condensate drain for leaks and check that it is discharging correctly

5. Finally set the controls to the user’s requirements.

### 43 HANDING OVER

After completing the installation and commissioning of the system the installer should hand over to the householder by the following actions:

1. Hand the User’s Instructions to the householder and explain his or her responsibilities under current Gas Safety (Installation and Use) Regulations or rules in force.

2. Explain and demonstrate the lighting and shutting down procedures.

3. The operation of the boiler and the use and adjustment of ALL system controls should be fully explained to the householder to ensure the greatest possible fuel economy consistent with household requirements of both heating and hot water consumption. Advise the User of the precautions necessary to prevent damage to the system and to the building in the event of the system remaining inoperative during frosty conditions.

4. Explain the function and the use of the boiler heating controls.

5. Explain the function of the boiler fault mode. Emphasise that if a fault is indicated the boiler should be turned off and a Registered Gas Installer consulted. In IE contact a competent person.

6. Explain and demonstrate the function of time and temperature controls, radiator valves, etc., for the economic use of the system.

7. If any programmer is fitted then draw attention to the Programmer User’s Instructions and hand them to the householder.

8. After installation and commissioning please complete the Commissioning Checklist before handover to the customer. For IE, its is necessary to complete a “Declaration of Conformity” to indicate compliance to I.S. 813:2002.

9. **IMPORTANT**
   - Stress the importance of regular servicing by a Registered Gas Installer and that a comprehensive service should be carried out AT LEAST ONCE A YEAR. In IE servicing work must be carried out by a competent person.

10. As the installer you may wish to undertake the service contract yourself or alternatively offer to the customer the benefits of the Ideal Care Scheme, details of which are outlined in the household pack supplied with this boiler.
44 SERVICING SCHEDULE

For the very latest copy of literature for specification and maintenance practices visit our website www.idealboilers.com, where you will be able to download relevant information. N.B. Technical Bulletins are also available on our website.

WARNING. Always turn OFF the gas supply at the gas service cock, and switch OFF and disconnect the electricity supply to the appliance before servicing.

To ensure the continued safe and efficient operation of the appliance it is recommended that it is checked at regular intervals and serviced as necessary. The frequency of servicing will depend upon the installation condition and usage but should be carried out at least annually.

It is the law that any service work must be carried out by a Registered Gas Installer. In IE service work must be carried out by a competent person.

1. Light the boiler and carry out a pre-service check, noting any operational faults.
2. Clean the main burner.
3. Clean the heat exchanger & ‘S’ trap.
4. Check the condition of the combustion chamber insulation. Any cracked, damaged or displaced pieces should be replaced. Ionisation probes are a serviceable component and requires inspecting annually and replacing if distorted.
5. Check the main injector for blockage or damage.
6. Wherever possible remove and clean the condensate ‘S’ trap (refer to Frame 44) and check the drain for blockage.
7. Check that the flue terminal is unobstructed and that the flue system is sealed correctly.

The servicing procedures are covered more fully in Frames 44-51 and MUST be carried out in sequence.

Note. In order to carry out either servicing or replacement of components the boiler front panel and sealing panel must be removed. Refer to Frames 45 and 46.

IMPORTANT.
8. After completing the servicing or exchange of components always test for gas soundness.
9. When work is complete the sealing panel MUST be correctly refitted, ensuring that a good seal is made.

Do NOT OPERATE the boiler if the sealing panel is not fitted.

10. If, for any reason, the condensate ‘S’ trap has been removed ensure the trap is refilled with water before reassembling.
11. Check the gas consumption.
12. Connect a suitable gas analyser to the sampling point on the top of the boiler (refer to Frame 45) or into the flue terminal if access is possible (optional test). For correct boiler operation, the CO/CO₂ content of the flue gas should not be greater than 0.004 ratio.
13. Complete the service section in the Benchmark Commissioning Checklist.

45 BOILER FRONT PANEL REMOVAL

1. Remove the 2 screws from the underside of the appliance.
2. Pull the front panel forward at the bottom and lift to disengage it from the top lugs.

46 BOILER SEALING PANEL/BOTTOM PANEL REMOVAL

1. To remove the sealing panel remove the 4 screws.
2. Remove the panel.
3. To remove the bottom panel remove the 2 screws.
4. Pull the RH side of the panel down. Slide it to the right and withdraw.
### 47 FAN AND VENTURI ASSEMBLY REMOVAL AND CLEANING

1. Disconnect the electrical leads from the fan.
2. Undo the gas pipe union connection to the injector housing.
3. Undo the screw on the fan mounting bracket.
4. Lift off the fan and venturi assembly.
5. Inspect the injector for blockage or damage.

![Diagram of fan and venturi assembly](image)

### 48 BURNER REMOVAL AND CLEANING

1. Remove the 6 screws securing the burner (the 3 screws at the rear are extended to ease access).
2. Lift off the burner from the combustion chamber.

**IMPORTANT**

The burner head is a ceramic plaque construction. Care must be taken to ensure that the burner is not placed down upon its face as this may cause damage to the ceramic.

3. Brush off any deposits that may be on the ceramic with a SOFT brush.
4. Inspect the sealing gasket around the burner and combustion chamber insulation for any signs of damage. Replace as necessary.

**Note.**

Take care not to disturb the ionisation probes at the front and rear of the combustion chamber.
49 CLEANING THE CONDENSATE ‘S’ TRAP

1. Undo the plastic union nut on the condensate ‘S’ trap outlet.
2. Remove the 2 screws.
3. Pull the trap down and forward to remove.
4. Flush out any deposits with clean water.

50 CLEANING THE HEAT EXCHANGER

1. Remove ignition and flame detection electrodes. Refer to Frames 56 & 57.
2. Remove the 3 screws retaining the sump cover and remove.
3. Using a suitable tool as supplied in the standard British Gas Flue brush kit, clean between the heat exchanger fins from the top of the heat exchanger.
4. Access to the base of the heat exchanger is now possible. Brush clean any deposits from the base of the heat exchanger and remove any loose deposits from the sump.
5. Inspect the ignition and detection electrodes. Ensure that they are clean and in good condition - replace if necessary.
6. Check the condition of the combustion chamber insulation. Any cracked or damaged pieces must be replaced.

Note. Take care not to disturb the ionisation probes at the front and rear of the combustion chamber.
7. Check that the ignition and detection gaps are correct. Refer to Frames 56 & 57.

51 REASSEMBLY

Reassemble the boiler in the following order.

1. Refit the condensate ‘S’ trap, ensuring that it is full of water.
2. Refit the sump cover plate.
3. Refit the electrodes (check dimensions Frames 56 & 57).
4. Refit the burner.
5. Refit the fan / venturi assembly.
6. Reconnect the fan electrical leads.
7. Refit the boiler sealing panel.

IMPORTANT.
Ensure the boiler sealing panel is correctly fitted and that a good seal is made.
8. Refit the boiler front and bottom panels.
9. Turn on the gas supply at the gas service cock.
10. Reconnect the electrical supply.
SERVICING

52 REPLACEMENT OF COMPONENTS

GENERAL
When replacing ANY component:

1. Isolate the electricity supply.
2. Turn off the gas supply.
3. Remove the boiler front panel. Refer to Frame 40.

After replacing ANY component check operation of the boiler including gas soundness, gas rate and combustion test.

THE BOILER MUST NOT BE OPERATED WITHOUT THE SEALING PANEL FITTED

53 CONTROL THERMISTOR REPLACEMENT

1. Refer to Frame 52.
2. Remove the boiler front and sealing panels. Refer to Frames 45 & 46.
3. Pull the electrical leads off the control thermistor.
4. Pull the control thermistor and spring clip off the flow pipe.
5. Replace thermistor and reconnect leads, ensuring that the spring clip is securely holding the thermistor to the flow pipe.
6. Reassemble the boiler in reverse order.
7. Check the operation of the boiler. Refer to Frame 52.

IMPORTANT
When work is complete, the sealing panel must be correctly fitted, ensuring that a good seal is made.

Note.
In order to assist fault finding, the control panel has an LED diagnostic display. The key to boiler fault conditions is shown in Frame 69.
54 FAN REPLACEMENT

1. Refer to Frame 52.
2. Remove the boiler front and sealing panels. Refer to Frames 45 & 46.
3. Disconnect the electrical leads from the fan.
4. Unscrew the gas pipe union connection to the injector housing.
5. Unscrew and remove the screw retaining the fan mounting bracket.
6. Remove the fan and venturi assembly.
7. Remove the 3 screws and remove the venturi assembly, noting the orientation of the venturi in relation to the fan body.
8. Transfer the venturi assembly to the new fan, replacing the gasket if evidence of damage or deterioration is visible.
9. Fit the new fan / venturi assembly.
10. Reassemble the boiler in reverse order, taking care not to overtighten the screw on the fan mounting bracket.
11. Check the operation of the boiler. Refer to Frame 52.

55 BURNER REPLACEMENT

1. Refer to Frame 52.
2. Remove the boiler front and sealing panels. Refer to Frames 45 & 46.
3. Remove the fan assembly. Refer to Frame 49.
4. Remove the 6 screws securing the burner (the 3 screws at the rear are extended to ease access).
5. Lift off the burner from the combustion chamber.
6. Fit the new burner, replacing any damaged or deteriorating sealing gasket.
7. Reassemble in reverse order.
8. Check the operation of the boiler. Refer to Frame 52.

Note. Take care not to disturb the ionisation probes at the front and rear of the combustion chamber.
56 IGNITION ELECTRODE REPLACEMENT
1. Refer to Frame 52.
2. Remove the boiler front and sealing panels. Refer to Frames 45 & 46.
3. Unplug the ignition lead from the electrode.
4. Remove the earth lead from the ignition electrode.
5. Remove the screws holding the ignition electrode to the combustion chamber.
6. Remove the electrode.

7. Fit the new ignition electrode, using the new gasket supplied. Check dimensions as shown.
8. Reassemble in reverse order and check that no damage to the combustion chamber insulation has occurred during the electrode replacement.
9. Check operation of the boiler. Refer to Frame 52.

57 FLAME DETECTION ELECTRODE REPLACEMENT
1. Refer to Frame 52.
2. Remove the boiler front, bottom & sealing panels. Refer to Frames 45 & 46.
3. Unplug the flame detection lead from the electrode.
4. Remove the 2 screws holding the flame detection electrode to the combustion chamber.
5. Remove the flame detection electrode.
6. Fit the new flame detection electrode, using the new gasket supplied. Check dimension as shown.
7. Reassemble in reverse order and check that no damage to the combustion chamber insulation has occurred during the electrode replacement.
8. Check operation of the boiler. Refer to Frame 52.
58 SPARK GENERATOR REPLACEMENT

1. Refer to Frame 52.
2. Disconnect the leads from the spark generator.
3. Remove the 2 M4 screws securing the spark generator to the mounting plate.
4. Fit the new spark generator and re-assemble in reverse order.
5. Check operation of the boiler. Refer to Frame 52.

59 BURNER INJECTOR REPLACEMENT

1. Refer to Frame 52.
2. Remove the boiler front and sealing panels. Refer to Frames 45 & 46.
3. Remove the fan / venturi assembly. Refer to Frame 54.
4. Remove the 2 injector housing screws.
5. With draw the injector housing.
6. Fit the new injector housing, complete with injector.
7. Reassemble in reverse order, ensuring that the new gas seal supplied is located correctly in the injector housing.
8. Check operation of the boiler. Refer to Frame 52.

60 GAS CONTROL VALVE REPLACEMENT

1. Refer to Frame 52.
2. Remove the boiler front, bottom and sealing panels. Refer to Frames 45 & 46.
3. Unplug the electrical lead from the gas control valve and disconnect the earth wire.
4. Remove the sensing tube from the gas control valve.
5. Undo the union nut between the gas valve and the gas inlet cock.
6. Undo the union nut on the outlet side of the gas control valve.
7. Undo the gas valve bracket screw, slide the gas valve forward and remove.
8. Transfer the mounting bracket and gas inlet pipe to the new gas control valve.
9. Fit new gas control valve, ensuring that any seals showing damage or deterioration are replaced.
10. Reassemble in reverse order.
11. Ensure the sensing tubing is correctly replaced and not kinked or blocked in any way.
12. Check operation of the boiler. Refer to Frame 52.
61 CONTROL BOX REPLACEMENT

1. Refer to Frame 52.
2. Remove the front panel.
3. Remove the bottom panel.
4. Remove the 2 control box hex socket screws.
5. Carefully unplug all the electrical wiring from the control box.
6. With the control box lowered, pull the assembly forward to remove from the housing.
7. Remove the user control from the assembly.
8. Transfer the mounting brackets to the new control box.
9. Reassemble in reverse order, ensuring that the control box is located correctly in the housing before reconnecting the electrical wiring.
10. Check operation of the boiler. Refer to Frame 52.

N.B. To change the user control only.
11. Loosen the screw on the underside of the user control.
12. Pull the display unit forward to remove.
13. Push the new display unit into position.
14. Reassemble in reverse order.
15. Check the operation of the boiler. Refer to Frame 52.

62 MAINS SWITCH REPLACEMENT

1. Refer to Frame 52.
2. Remove the boiler front and bottom panel.
3. Remove the 2 control box hex socket screws and lower the control box.
4. Push out the mains switch from the rear, as shown.
5. Refit the new switch, ensuring that the electrical leads are replaced on the correct terminals (refer to Frame 38) and the key on the switch is correctly aligned with the slot in the plastic moulding.
6. Reassemble in reverse order.
7. Check operation of the boiler. Refer to Frame 52.
**SERVICING**

### 63 OVERHEAT THERMOSTAT REPLACEMENT

1. Refer to Frame 52.
2. Remove the boiler front and sealing panels. Refer to Frames 45 & 46.
3. Pull off the electrical leads from the thermostat body.
4. Pull the thermostat and clip from the pipe.
5. Fit the new thermostat, ensuring that the clip is securely holding the thermostat to the flow pipe.
6. Reassemble in reverse order.
7. Check operation of the boiler. Refer to Frame 52.

### 64 FLUE THERMISTOR REPLACEMENT

1. Refer to Frame 52.
2. Remove the boiler front and sealing panels. Refer to Frames 45 & 46.
3. Pull off the silicon tube from the thermistor housing.
4. Remove the aluminium nipple securing the thermistor to the flue manifold.
5. Withdraw the thermistor.
6. Unplug the inline electrical connector.
7. Fit the new thermistor, using the gasket supplied.
8. Reassemble in reverse order.
9. Check operation of the boiler. Refer to Frame 52.
The insulation boards used in the combustion chamber of this product are made of high temperature glass fibres with a binder of organic and inorganic materials. Ideal Stelrad Group recommend that, for your own comfort and safety and to comply with good working practice, the procedure described below is followed:

1. Refer to Frame 52.
2. Remove the boiler front and sealing panels. Refer to Frames 45 & 46.
3. Remove the fan / venturi assembly. Refer to Frame 54.
4. Remove the burner. Refer to Frame 48.
5. Remove the ignition electrode. Refer to Frame 56.
6. Remove the flame detection electrode. Refer to Frame 52.
7. Remove the front and rear ionisation probes. Ionisation probes are a serviceable component and requires inspecting annually and replacing if distorted.

Prior to removal of the board the following protective equipment should be worn:
- Face mask supplied with the spare part.
- Gloves supplied with the spare part.
8. Damp down the combustion chamber area containing the insulation boards.

Fit insulation in the following order:

1. Rear.
2. Left Hand Side.
3. Front.
4. Right Hand Side.

9. Remove the split pin and washer from the RHS of the combustion chamber.
10. Remove the insulation boards. The replacement boards are supplied in a plastic bag. This bag should be retained and the discarded boards should now be placed into it.
11. Sweep any dampened particles and place in the plastic bag.
12. Fit new insulation boards.

Note. The boards are designed to be interlocking and should be fitted as shown.
13. Fit the new split pin and washer in the RHS of the chamber.
14. Remove the gloves and face mask and place them in the plastic bag.
15. Wash your hands and any areas of skin which may have come into contact with any of the particles from the insulation board.

Note. Seal the plastic bag and dispose of it and its contents into a commercial tip.
16. Reassemble in reverse order, remembering to re-fit the ionisation probes first.
17. Check operation of the boiler. Refer to Frame 52.
66 HEAT EXCHANGER REPLACEMENT

Refer also to Frame 10, ‘Boiler exploded view’.

1. Refer to Frame 52.
2. Remove front, bottom and sealing panels. Refer to Frames 45 & 46.
3. Remove the control box and place to one side. Refer to Frame 61.
4. Attach a length of hose to the drain nipple on the bottom of the heat exchanger and drain down the boiler.
5. Remove the fan assembly and place to one side. Refer to Frame 54.
6. Remove the burner and place to one side. Refer to Frame 48.
7. Remove the ignition and detection electrodes. Refer to Frames 56 & 57.
8. Remove the spark generator. Refer to Frame 58.
9. Release the flue from the turret.
10. Remove the turret from the boiler. Refer to Frame 15.
11. Release the silicon tubing from the sample point.
12. Release the electrical connections to the flue thermistor.
13. Unscrew the M5 x 10 screw retaining the top manifold flue casing.
14. Remove the top half of the flue manifold from the appliance.
15. Undo the 4 M5 x 10 screws securing the bottom flue manifold casting.
16. Pull the CH return pipe, CH flow pipe and the bottom flue manifold together up and out of the heat exchanger.
17. Remove the condensate 'S' trap. Refer to Frame 49.
18. Unscrew the 2 M5 x 10 screws from the inter panel.
19. Slide the heat exchanger and inter panel assembly upwards to disengage and remove from the casing.
20. Transfer the interpanel to the new heat exchanger.
21. Reassemble in reverse order, replacing gaskets or seals if any sign of damage or deterioration is evident.

**Note:**

The heat exchanger is supplied with new combustion chamber insulation boards. These should be fitted (refer to Frame 65) before the burner and fan assembly and before the ignition and detection electrodes are replaced.

25. Check the operation of the boiler. Refer to Frame 52.
67 BOILER SEALING PANEL SEAL REPLACEMENT

1. Refer Frame 52.
2. Remove the front panel. Refer to Frame 45.
3. Remove the boiler sealing panel. Refer to Frame 46.
4. Remove the old seal from the casing and thoroughly clean the casing surfaces.
5. Fit the new adhesive seals - note that they are supplied to the correct length for the relevant sides.
6. Reassemble in reverse order.
   Note. Ensure that the boiler sealing panel is correctly seated, compressing the seal to make an airtight joint.
7. Check operation of boiler. Refer to Frame 52.

68 CONDENSATE 'S' TRAP REPLACEMENT

1. Refer to Frame 52.
2. Remove the boiler front panel. Refer to Frame 45.
3. Remove the boiler bottom panel. Refer to Frame 46.
4. Undo the plastic union nut on the condensate 'S' trap outlet.
5. Remove the 2 screws.
6. Pull the trap down and forward to remove.
7. Reassemble in reverse order, ensuring that the new trap is full of water.
8. Check operation of the boiler. Refer to Frame 52.
In order to assist fault finding the boiler has an LED diagnostic display. The key to the display codes is as follows:

- Alternating 'L' 'F'  ➔ Go to Frame 70
- Alternating 'L' 'E'  ➔ Go to Frame 71
- Alternating 'L' 'A'  ➔ Go to Frame 72
- Alternating 'L' '8'  ➔ Go to Frame 73
- Alternating 'H' '1'  ➔ Go to Frame 74
- Alternating 'H' 'F'  ➔ Go to Frame 75
- Alternating 'H' '4'  ➔ Go to Frame 76
- Alternating 'H' 'n'  ➔ Go to Frame 77
- Alternating 'H' 'E'  ➔ Go to Frame 71
- Alternating 'H9'     ➔ Go to Frame 76
- Alternating 'L9'     ➔ Go to Frame 76
70 L.....F.... (FLAME ERROR)

If the boiler reset button is pressed does the boiler ignite for a short time then extinguish?

YES

Check the detection electrode and associated harness for:
continuity, visual condition, position
(Refer to Frame 57).
Replace as necessary.

NO

Is gas pressure available at the boiler inlet?

YES

Is 200V DC supply available at the gas valve?

NO

Check gas valve wiring for continuity

YES

Check spark generator and associated harness for continuity and visual condition.
Refer to Frame 58. Are these functioning correctly?

NO

Replace PCB

YES

Replace spark generator

Check the ignition electrode and associated harness for:
continuity, visual condition, position
(Refer to Frame 57).
Are these functioning correctly?

NO

Replace ignition electrode and associated harness as necessary

YES

Replace gas valve

Note. Due to the wave form of the rectified voltage the reading will vary, depending on the type of meter used to measure the value (some may measure the possible peak voltage of 339V). In general terms, a reading greater than 150V indicates that the correct voltage is supplied to the gas valve. As an alternative to a multimeter a mains checking device may be used. E.g. an electrical screwdriver or a mains tester.

71 L.....E..... or H.....E..... (BOARD ERROR)

Check for an excess voltage between neutral and earth. Is the value below 50V?

YES

LE ONLY: Check continuity of OH thermostat. Is this correct?

NO

Correct wiring or replace thermostat

NO

Correct wiring or replace detection lead

NO

Correct Connections

YES

Check all earths for continuity

YES

Internal fault within the PCB

NO

Press and hold reset button for 2 seconds. Does boiler operate correctly?

YES

OK

NO

Turn boiler off and wait for 5 seconds. Turn boiler on. Does boiler operate correctly?

YES

OK

NO

Replace PCB

Check syphon and condensate drain pipework for blockage

Check spark generator and associated harness as necessary

Check for an excess voltage between neutral and earth. Is the value below 50V?

Correct wiring or replace thermostat

Check earth connection to the boiler. If value is still in excess of 50V consult a Qualified Electrician to check the household electrical supply and circuitry
Elise - Installation & Servicing

72 L.......A....... (OVERHEAT ERROR)

Can the overheat condition be reset by pressing the boiler reset button when the system is cold?

Yes

Does the pump setting give a differential across the boiler in excess of 25 °C?

No

Increase the pump setting. Is differential now below 25 °C?

No

Replace the system pump

Yes

OK

Is water and all isolation valves open?

Fill and vent the system and open all isolation valves

Replace overheat thermostat

Note. With V9 Primary Control PCB, overheat LA/HA or H9/L9 when reset will display 3 horizontal lines and will not attempt to refire until the temperature in the heat exchanger drops below 50°C.

73 L.......8..... (FAN ERROR)

Is nominal 330 V DC present across red and blue at the fan connector as reset button is pressed?

Yes

Is 14 V DC present across yellow and pink at the fan connector?

Yes

Replace fan

No

Check wiring harness for continuity. Is there continuity?

Yes

Replace PCB

No

Replace harness

74 H.......1..... (FLOW THERMISTOR ERROR)

Remove the boiler flow thermistor from the CH flow pipe and disconnect thermistor wires.

Check resistance, using a suitable multimeter connected across the thermistors terminal pins

At 25 °C expect 9,700 - 10,300 Ohms
At 60 °C expect 2,400 - 2,600 Ohms
At 85 °C expect 1,000 - 1,100 Ohms

Are the thermistor values correct?

Yes

Replace the thermistor

No

Is there continuity between the PCB and the thermistor?

Replace PCB

Check and replace wiring as necessary
**FAULT FINDING**

**75 H......F....... (FLAME DETECTION - SHORT CIRCUIT ERROR)**

Remove flame detection electrode terminal from PCB.

- Is there continuity between the 2 terminal pins?
  - NO: Replace PCB.
  - YES: Replace flame detection electrode

**76 H.....4...... (FLUE THERMISTOR ERROR)**

Can the fault condition be reset by switching off the mains supply to the boiler?

- NO: Check wiring for continuity from the PCB to the flue thermistor.

Check resistance, using a suitable multimeter connected across the thermistor terminal pins.
- At 25°C expect 9,700 - 10,300 Ohms
- At 60°C expect 2,400 - 2,600 Ohms
- At 85°C expect 1,000 - 1,100 Ohms

- Are thermistor values correct?
  - YES: Replace PCB
  - NO: Replace PCB

**H9/L9 (HEAT EXCHANGER OVERHEAT)**

Is the system filled and vented and all isolation valves open, including TRV's & Bypass?

Check the pump is operating correctly in Heating & DHW and check temp diffs across Flow & Return.

- YES: Fill and vent the system and open all isolating valves
  - NO: Check Flow stat is fitted - making contact with pipe

Check resistance, using a suitable multimeter connected across the dry fire thermistor terminal pins.
- At 25°C expect 9,700 - 10,300 Ohms
- At 60°C expect 2,400 - 2,600 Ohms
- At 85°C expect 1,000 - 1,100 Ohms

- Are thermistor values correct?
  - YES: Check that a permanently open bypass circuit is available during the pump over-run period after boiler shutdown. This can be provided by either an automatic bypass valve or a heat leak radiator (no TRV) of at least 10% of the minimum boiler output.
  - NO: Replace thermistor

**77 H......n........ (PHASE REVERSAL ERROR)**

Check wiring to the boiler for reversed live and neutral.

---

*Note.*

With V9 Primary Control PCB, overheat LA/HA or H9/L9 when reset will display 3 horizontal lines and will not attempt to refire until the temperature in the heat exchanger drops below 50°C.
The following are parts commonly required due to damage or expendability. Their failure or absence is likely to affect safety or performance of this appliance.

The list is extracted from the British Gas List of Parts, which contains all available spare parts.

The full list is held by British Gas Services, Ideal Stelrad Group distributors and merchants.

When ordering spares please quote:
1. Boiler Model
2. Appliance G.C. Number
3. Description
4. Quantity
5. Product Number

When replacing any part on this appliance use only spare parts that you can be assured conform to the safety and performance specification that we require. Do not use reconditioned or copy parts that have not been clearly authorised by Ideal Boilers Limited.

<table>
<thead>
<tr>
<th>Key No.</th>
<th>GC Part No.</th>
<th>Description</th>
<th>Qty.</th>
<th>Product No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E67-482</td>
<td>Front casing panel</td>
<td>1</td>
<td>174 766</td>
</tr>
<tr>
<td>4</td>
<td>E67-489</td>
<td>Bottom casing panel</td>
<td>1</td>
<td>174 991</td>
</tr>
<tr>
<td>11</td>
<td>E67-489</td>
<td>Burner</td>
<td>1</td>
<td>170 905</td>
</tr>
<tr>
<td>12</td>
<td>E67-492</td>
<td>Combustion chamber insulation</td>
<td>1</td>
<td>173 520</td>
</tr>
<tr>
<td>14</td>
<td>E67-492</td>
<td>Injector and housing</td>
<td>1</td>
<td>170 908</td>
</tr>
<tr>
<td>16</td>
<td>E65-097</td>
<td>Fan assembly</td>
<td>1</td>
<td>172 625</td>
</tr>
<tr>
<td>19</td>
<td>E67-497</td>
<td>Gas control valve</td>
<td>1</td>
<td>170 913</td>
</tr>
<tr>
<td>22</td>
<td>E67-500</td>
<td>Flue thermistor</td>
<td>1</td>
<td>170 916</td>
</tr>
<tr>
<td>23</td>
<td>E67-501</td>
<td>Control thermistor</td>
<td>2</td>
<td>170 917</td>
</tr>
<tr>
<td>24</td>
<td>E67-502</td>
<td>Overheat thermostat</td>
<td>1</td>
<td>170 918</td>
</tr>
<tr>
<td>25</td>
<td>E67-502</td>
<td>Ignition electrode kit</td>
<td>1</td>
<td>175 406</td>
</tr>
<tr>
<td>26</td>
<td>E67-511</td>
<td>Condensate ‘S’ trap</td>
<td>1</td>
<td>170 926</td>
</tr>
<tr>
<td>32</td>
<td>E67-511</td>
<td>Controls hinge bracket kit</td>
<td>1</td>
<td>170 928</td>
</tr>
<tr>
<td>35</td>
<td>E67-519</td>
<td>PCB primary controls kit (V9)</td>
<td>1</td>
<td>174 486</td>
</tr>
<tr>
<td>37</td>
<td>E67-519</td>
<td>Fuse PCB (3.15A L 250V)</td>
<td>1</td>
<td>170 931</td>
</tr>
<tr>
<td>39</td>
<td>E67-519</td>
<td>Main switch c/w harness</td>
<td>1</td>
<td>173 533</td>
</tr>
<tr>
<td>45</td>
<td>E65-527</td>
<td>Gasket kit</td>
<td>1</td>
<td>170 938</td>
</tr>
<tr>
<td>52</td>
<td>E68-376</td>
<td>Seal kit - sealing panel</td>
<td>1</td>
<td>171 014</td>
</tr>
<tr>
<td>53</td>
<td>E68-380</td>
<td>Turret gasket</td>
<td>1</td>
<td>171 022</td>
</tr>
<tr>
<td>40</td>
<td>E68-380</td>
<td>Spark generator</td>
<td>1</td>
<td>173 538</td>
</tr>
<tr>
<td>94</td>
<td>E68-380</td>
<td>Ignition lead</td>
<td>1</td>
<td>175 424</td>
</tr>
<tr>
<td>95</td>
<td>E68-380</td>
<td>Detection lead</td>
<td>1</td>
<td>173 511</td>
</tr>
</tbody>
</table>
78 SHORT LIST

1. Front casing panel with screws.
2. Sealing panel with screws.
4. Bottom casing panel with screws.

79 BOILER CASING ASSEMBLY
**LIST OF PARTS**

**80 CONTROLS ASSEMBLY**

33. Controls assy with screws.
34. Controls hinge bracket.
35. User controls (without item 38).
36. PCB (primary controls).
38. User control housing.
54. Jumper link.

**81 BURNER ASSEMBLY**

INSTALLER NOTIFICATION GUIDELINES

IT IS A REQUIREMENT OF CORGI MEMBERSHIP TO REGISTER EVERY GAS APPLIANCE

In addition a change to Building Regulations (England and Wales) requires the installer to notify when installing a heating appliance, as from 1st April 2005.

Install and commission this appliance to manufacturers’ instructions

Complete the Benchmark Checklist

Choose Buildings Regulations notification route

Competent Person’s SELF CERTIFICATION SCHEME

If you notify via CORGI Scheme, CORGI will then notify the relevant Local Authority Building Control (LABC) scheme on members behalf

Scheme members only: Call CORGI on 0870 88 88 777 or log onto: www.corgi-notify.com within 10 days

You must ensure that the notification number issued by CORGI is written onto the Benchmark Checklist

CORGi will record the data and will send a certificate of compliance to the property

BUILDING CONTROL

Contact your relevant Local Authority Building Control (LABC) who will arrange an inspection or contact a government approved inspector

LABC will record the data and will issue a certificate of compliance

IT IS A CONDITION OF THE MANUFACTURERS WARRANTY THAT THE BENCHMARK COMMISSIONING CHECKLIST IS FULLY COMPLETED AND LEFT WITH THE APPLIANCE
GAS BOILER SYSTEM COMMISSIONING CHECKLIST

This Commissioning Checklist is to be completed in full by the competent person who commissioned the boiler as a means of demonstrating compliance with the appropriate Building Regulations and then handed to the customer to keep for future reference.

Failure to install and commission this equipment to the manufacturer’s instructions may invalidate the warranty but does not affect statutory rights.

Customer Name ___________________________ Telephone Number ___________________________

Address: ___________________________

Boiler Make and Model ___________________________

Boiler Serial Number ___________________________

Commissioned by (print name) ___________________________ CORGI Number ___________________________

Company Name ___________________________ Telephone Number ___________________________

Company Address ___________________________ Commissioning Date ___________________________

To be completed by the customer on receipt of a Building Regulations Compliance Certificate.

Building Regulations Notification Number (if applicable) ___________________________

CONTROLS Tick the appropriate boxes

<table>
<thead>
<tr>
<th>Time and Temperature Control to Heating</th>
<th>Room Thermostat and Programmer/Timer</th>
<th>Programmable Room Thermostat</th>
<th>Load/Weather Compensation</th>
<th>Optimum Start Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time and Temperature Control to Hot Water</th>
<th>Cylinder Thermostat and Programmer/Timer</th>
<th>Combination Boiler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heating Zone Valves</th>
<th>Fitted</th>
<th>Not Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Water Zone Valves</td>
<td>Fitted</td>
<td>Not Required</td>
</tr>
<tr>
<td>Thermostat Regulator Valves</td>
<td>Fitted</td>
<td>Not Required</td>
</tr>
<tr>
<td>Automatic Freeze to System</td>
<td>Fitted</td>
<td>Not Required</td>
</tr>
<tr>
<td>Boiler Isolation</td>
<td>Provided</td>
<td></td>
</tr>
</tbody>
</table>

ALL SYSTEMS

The system has been flushed and drained in accordance with BS7341 and boiler manufacturer’s instructions. Yes [ ]

What system cleaner was used? ___________________________

What window was used? ___________________________ Quantity: ___________________________ Year: ___________________________

CENTRAL HEATING MODE Measure and Record:

<table>
<thead>
<tr>
<th>Gas Rate</th>
<th>M3/hr</th>
<th>kW</th>
<th>HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Heating Primary Temperature</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Heating Return Temperature</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMBINATION BOILERS ONLY

Is the installation in a hard water area (above 200 ppm)? Yes [ ] No [ ]

Yes, has a water softener/Reduced dose been fitted? Yes [ ] No [ ]

What type of scale reducer has been fitted? ___________________________

DOMESTIC HOT WATER MODE Measure and Record:

<table>
<thead>
<tr>
<th>Gas Rate</th>
<th>M3/hr</th>
<th>kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot water has been checked at all outlets</td>
<td>Yes</td>
<td>Temperature °C</td>
</tr>
<tr>
<td>Water Flow Rate</td>
<td>l/min</td>
<td></td>
</tr>
</tbody>
</table>

CONDENSING BOILERS ONLY

The condensate drain has been installed in accordance with the manufacturer’s instructions and/or BS5554/BS5679. Yes [ ]

ALL INSTALLATIONS

If required by the manufacturer, record the following:

- CO2 %
- O2 %
- rpm
- Oil
- CO2/O2 Ratio

The heating and hot water system complies with the appropriate Building Regulations Yes [ ]

The boiler and associated products have been installed and commissioned in accordance with the manufacturer’s instructions Yes [ ]

The operation of the boiler and system control have been demonstrated to and understood by the customer Yes [ ]

The manufacturer’s literature, including Benchmark Checklist and Service Record, has been explained and left with the customer Yes [ ]

Commissioning Engineer’s Signature ___________________________

Customer’s Signature ___________________________

(To confirm satisfactory demonstration and receipt of manufacturer’s literature)

*All installations in England and Wales must be notified to a Local Authority Building Control (LABC) either directly or through a Competent Persons Scheme. A Building Regulations Compliance Certificate will then be issued to the customer.

© Heating and Hotwater Industry Council (HHIC) www.centralheating.co.uk
# SERVICE RECORD

It is recommended that your heating system is serviced regularly and that the appropriate Service Record is completed.

**Service Provider**

Before completing the appropriate Service Record below, please ensure you have carried out the service as described in the manufacturer’s instructions.

Always use the manufacturer’s specified spares part when replacing controls.

<table>
<thead>
<tr>
<th>SERVICE 1</th>
<th>Date</th>
<th>Energy Efficiency Checklist completed?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineer Name</td>
<td>Company Name</td>
<td>Telephone Number</td>
<td>CORGI ID Number</td>
<td>Comments</td>
</tr>
<tr>
<td>SERVICE 2</td>
<td>Date</td>
<td>Energy Efficiency Checklist completed?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Engineer Name</td>
<td>Company Name</td>
<td>Telephone Number</td>
<td>CORGI ID Number</td>
<td>Comments</td>
</tr>
<tr>
<td>SERVICE 3</td>
<td>Date</td>
<td>Energy Efficiency Checklist completed?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Engineer Name</td>
<td>Company Name</td>
<td>Telephone Number</td>
<td>CORGI ID Number</td>
<td>Comments</td>
</tr>
<tr>
<td>SERVICE 4</td>
<td>Date</td>
<td>Energy Efficiency Checklist completed?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Engineer Name</td>
<td>Company Name</td>
<td>Telephone Number</td>
<td>CORGI ID Number</td>
<td>Comments</td>
</tr>
<tr>
<td>SERVICE 5</td>
<td>Date</td>
<td>Energy Efficiency Checklist completed?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Engineer Name</td>
<td>Company Name</td>
<td>Telephone Number</td>
<td>CORGI ID Number</td>
<td>Comments</td>
</tr>
<tr>
<td>SERVICE 6</td>
<td>Date</td>
<td>Energy Efficiency Checklist completed?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Engineer Name</td>
<td>Company Name</td>
<td>Telephone Number</td>
<td>CORGI ID Number</td>
<td>Comments</td>
</tr>
<tr>
<td>SERVICE 7</td>
<td>Date</td>
<td>Energy Efficiency Checklist completed?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Engineer Name</td>
<td>Company Name</td>
<td>Telephone Number</td>
<td>CORGI ID Number</td>
<td>Comments</td>
</tr>
<tr>
<td>SERVICE 8</td>
<td>Date</td>
<td>Energy Efficiency Checklist completed?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Engineer Name</td>
<td>Company Name</td>
<td>Telephone Number</td>
<td>CORGI ID Number</td>
<td>Comments</td>
</tr>
<tr>
<td>SERVICE 9</td>
<td>Date</td>
<td>Energy Efficiency Checklist completed?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Engineer Name</td>
<td>Company Name</td>
<td>Telephone Number</td>
<td>CORGI ID Number</td>
<td>Comments</td>
</tr>
<tr>
<td>SERVICE 10</td>
<td>Date</td>
<td>Energy Efficiency Checklist completed?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Engineer Name</td>
<td>Company Name</td>
<td>Telephone Number</td>
<td>CORGI ID Number</td>
<td>Comments</td>
</tr>
</tbody>
</table>
Technical Training

The Ideal Boilers Technical Training Centre offers a series of first class training courses for domestic, commercial and industrial heating installers, engineers and system specifiers.
For details of courses please ring: 01482 498 432

Certified Product
Manufactured under a BS EN ISO 9001: 2000 Quality System accepted by BSI

The code of practice for the installation, commissioning & servicing of central heating systems

Ideal Boilers, P.O. Box 103, National Ave, Kingston upon Hull, HU5 4JN. Telephone: 01482 492 251 Fax: 01482 448 858. Registration No. London 322 137.

Ideal Stelrad Group pursues a policy of continuing improvement in the design and performance of its products. The right is therefore reserved to vary specification without notice.

Ideal Stelrad Group
Ideal Installer/Technical Helpline: 01482 498 663
www.idealboilers.com